Схемы цифровых измерителей l c. LC Метр Прибор для измерения емкости и индуктивности на PIC16F628A. Принципиальная схема измерителя емкости и индукции

Самодельные измерительные приборы

Радиоконструктор 1999 №1

Прибор предназначен для использования в радиолюбительской практике, он даёт возможность измерять ёмкости конденсаторов в пределах 10 пф - 10мкф, индуктивности катушек и дросселей в пределах 10 мкГн -1 Гн. Погрешность измерения не превышает 4%, отображение результатов на шкале микроамперметра на 100 мкА.

Принципиальная схема показана на рисунке. На микросхемах выполнен генератор прямоугольных импульсов, частоту которых можно изменять ступенчато при помощи переключателя S1. Далее следует измерительный мост с микроамперметром на выходе. Катушки и конденсаторы подключаются, соответственно к разъёмам "L" и "С" Питается прибор от сетевого источника на силовом трансформаторе Т1, диодном выпрямителе на VD6-VD9 и стабилизаторе на VT1.

При подборе деталей можно взять, практически любые десятичные счётчики КМОП или МОП, например К561ИЕ14 или К176ИЕ4 и включить их последовательно по схеме декадного делителя. Нужно учитывать, что для микросхем К176 нужно повысить напряжение питания до 9-10В заменив стабилитрон КС156 на Д818, КС210. Вообще, для питания микросхем К561 можно выбрать напряжение от 5-ти до 15-ти вольт, соответственно и стабилитрон можно выбрать на это напряжение. Диоды Д9 можно заменить на Д18, Д20 или, что лучше на ГД507. КД522 - любые кремниевые импульсные.

Буквой C. Вот отсюда и пошло название прибора. Или иными словами, LC-метр – это прибор для измерения значений индуктивности и емкости.

На фото он выглядит примерно вот так:

LC-метр на вид напоминает . Он также имеет два щупа для измерения значений катушки индуктивности и емкости. Выводы конденсаторов можно пихать либо в отверстия для конденсаторов, там где написано Cx, а можно и напрямую к щупам. Проще и быстрее все-таки подсоединять к щупам. Индуктивность и емкость измеряются очень просто, выставляем предел измерения, покрутив крутилку, и смотрим обозначение на дисплее LC-метра . Как говорится, даже маленький ребенок без труда освоит эту “игрушку”.

Как измерить емкость LC-метром

Вот у нас четыре испытуемых конденсатора. Трое из них – неполярные, а один – полярный (черный с серой полосой)


Погнали


Давайте разберемся с обозначениями на конденсаторе. 0,022 мкФ – это его емкость, то есть 0,022 микрофарад. Далее +-5% – это его погрешность. То есть измеряемое значение может быть на плюс или минус 5% больше или меньше. Если больше или меньше 5 % – значит конденсатор у нас плохой, и его желательно не использовать. Пять процентов от 0,022 – это 0,001. Следовательно, конденсатор можно считать вполне рабочим, если его измеряемая емкость будет находится в диапазоне от 0,021 до 0,023. У нас значение 0,025. Если даже учесть погрешность измерения прибора – это не есть хорошо. Выкидываем его куда подальше. Ах да, обратите внимание на вольты, которые пишутся после процентов. Там написано 200 Вольт – это значит, что он рассчитан на напряжение до 200 Вольт. Если у него в схеме будет на выводах напряжение больше 200 Вольт, то он, скорее всего, выйдет из строя.

Если, например, на конденсаторе указано 220 В, то это – максимальное значение напряжения . С учётом того, что в сетях переменного тока указываются , то такой конденсатор не подойдёт для применения при напряжении сети 220 В, так как максимальное значение напряжения в этой сети = 220 В х 1,4 (то есть корень из 2) = 310 В. Конденсатор надо выбрать такой, чтобы он был рассчитан на напряжение намного превышающее 310 Вольт.

Следующий советский конденсатор


0,47 микрофарад. Погрешность +-10 %. Это значит 0,047 в ту и другую сторону. Его можно считать нормальным в диапазоне 0,423-0,517микроФарад. На LC-метре 0,489 – следовательно, он вполне работоспособный.

Следующий импортный конденсатор


На нем написано,22 – это значит 0,22 микрофарад. 160 – это предел напряжения. Вполне нормальный конденсатор.

И следующий электролитический или, как его называют радиолюбители, электролит. 2,2 микрофарада на 50 Вольт.



Все ОК!

Как измерить индуктивность LC-метром

Давайте замеряем индуктивность катушки индуктивности . Берем катушку и цепляемся к ее выводам. 0,029 миллигенри или 29 микрогенри.


Таким же образом можно проверить другие катушки индуктивности.

Где купить LC-метр

В настоящее время прогресс дошел до того, что можно купить универсальный R/L/C/Transistor-metr , который умеет замерять почти все параметры радиоэлектронных компонентов


Ну для эстетов все таки есть нормальные LC-метры, которые в один клик можно приобрести с Китая в интернет-магазине Алиэкспресс;-)

Вот страничка на LC-метры.

Вывод

Катушки индуктивности и конденсаторы – незаменимая вещь в электронике и электротехнике. Очень важно знать их параметры, потому как малейшее отклонение параметра от значения написанного на них может сильно изменить работу схемы, особенно это касается приемопередающей аппаратуры. Измеряйте, измеряйте и еще раз измеряйте!

ИСТОЧНИК: Журнал "Радио" № 7 2004 г.

В практике радиолюбителя измерение параметров используемых радиоэлементов — первый основополагающий шаг в достижении поставленных целей при создании радиотехнического или электронного комплекса. Не зная свойств "элементарных кирпичиков", очень трудно сказать, какими свойствами будет обладать построенный из них дом. В данной статье читателю предложено описание несложного измерительного прибора, который должен быть в лаборатории у каждого радиолюбителя.

Принцип работы предлагаемого LC-метра основан на измерении энергии, накапливаемой в электрическом поле конденсатора и магнитном поле катушки. Впервые применительно к любительской конструкции этот метод был описан в , а в последующие годы с незначительными изменениями широко был использован во многих конструкциях измерителей индуктивности и емкости. Применение в данной конструкции микроконтроллера и ЖКИ индикатора позволило создать простой, малогабаритный, дешевый и удобный в эксплуатации прибор, имеющий достаточно высокую точность измерений. При работе с прибором не нужно манипулировать никакими органами управления, достаточно просто подключить измеряемый элемент и считать показа ния с индикатора.

Технические характеристики

Диапазон измеряемой емкости.............0,1пФ...5мкФ
Диапазон измеряемой индуктивности........0,1 мкГн...5 Гн
Погрешность измеряемой величины, не более, %.........±3
Напряжение питания, В........7,5...9
Ток потребления, мА, не более.........................15
Автоматический выбор диапазона измерений
Программная коррекция нуля
Габариты, мм............140x40x30

Принципиальная схема прибора показана на рис. 1

Сигнал возбуждающего напряжения рямоугольной формы с вывода 6 (РВ1) микроконтроллера DD1 через три нижних по схеме буферных элемента DD2 поступает на измерительную часть устройства. Во время высокого уровня напряжения зарядка измеряемого конденсатора Сх происходит через резистор R9 и диод VD6, а во время низкого — разрядка через R9 и VD5. Средний ток разрядки, пропорциональный величине измеряемой емкости, устройство преобразует с помощью операционного усилителя DA1 в напряжение. Конденсаторы С5 и С7 сглаживают его пульсации. Резистор R14 служит для точной установки нуля ОУ.

При измерении индуктивности во время высокого уровня ток в катушке нарастает до значения, определяемого резистором R10, а во время низкого — ток, создаваемый ЭДС самоиндукции измеряемой катушки, через VD4 и R11 также поступает на вход микросхемы DA1.

Таким образом, при постоянном напряжении питания и частоте сигнала напряжение на выходе ОУ прямопропорционально величинам измеряемых емкости или индуктивности. Но это справедливо только при условии, что зарядка конденсатора выполнена полностью в течение половины периода возбуждающего напряжения и также полностью произошла разрядка в течение другой половины. Аналогично и для катушки индуктивности. Ток в ней должен успевать нарастать до максимального значения и спадать до нуля. Эти условия можно обеспечить соответствующим выбором резисторов R9—R11 и частоты возбуждающего напряжения.

Напряжение, пропорциональное значению параметра измеряемого элемента, с выхода ОУ через фильтр R6C2 подают на встроенный десятиразрядный АЦП микроконтроллера DD1. Конденсатор С1 — фильтр внутреннего источника образцового напряжения АЦП.

Три верхних по схеме элемента DD2, а также VD1, VD2, С4, С11 использованы для формирования напряжения -5 В, необходимого для работы ОУ

Результат измерения прибор отображает на десяти разрядном семисегментном ЖКИ HG1 (КО-4В, серийно выпускает фирма "Телесистемы" в г.Зеленограде). Аналогичный индикатор использован в телефонах "PANAPHONE".

Для повышения точности прибор имеет девять поддиапазонов измерения. Частота возбуждающего напряжения на первом поддиапазоне равна 800 кГц. На такой частоте измеряют конденсаторы с емкостью примерно до 90 пФ и катушки с индуктивностью до 90 мкГн. На каждом последующем поддиапазоне частота снижена в 4 раза, соответственно во столько же раз расширен предел измерения. На девятом поддиапазоне частота равна 12 Гц, что обеспечивает измерение конденсаторов с емкостью до 5 мкФ и катушек с индуктивностью до 5 Гн. Нужный поддиапазон прибор выбирает автоматически, причем после включения питания измерение начинает с девятого поддиапазона. В процессе переключения номер поддиапазона отображен на индикаторе, что позволяет определить, на какой частоте выполняют измерение.

После выбора нужного поддиапазона результат измерения в пФ или мкГн выведен на индикатор. Для удобства считывания десятые доли пФ (мкГн) и единицы мкФ (Гн) отделены пустым знакоместом, а результат округлен до трех значащих цифр.

Светодиод HL1 красного цвета свечения использован в качестве стабистора на 1,5 В для питания индикатора. Кнопка SB1 служит для программной коррекции нуля, что помогает компенсировать емкость и индуктивность клемм и переключателя SA1. Этот переключатель можно исключить, если установить отдельные клеммы для подключения измеряемой индуктивности и емкости, но это менее удобно в эксплуатации. Резистор R7 предназначен для быстрой разрядки конденсаторов С9 и С10 при выключении питания. Без него повторное включение, обеспечивающее корректную работу индикатора, возможно не ранее чем через 10 с, что несколько неудобно при эксплуатации.

Все детали прибора, кроме переключателя SA1, смонтированы на односторонней печатной плате, которая показана на рис. 2 .

Индикатор HG1 и кнопка SB1 установлены со стороны монтажа и выведены на лицевую панель. Длина проводов до переключателя SA1 и входных клемм не должна превышать 2...3 см. Диоды VD3—VD6 — высокочастотные с малым падением напряжения, можно применить Д311, Д18, Д20. Подстроечные резисторы R11, R12, R14 малогабаритные типа СПЗ-19. Замена R11 на проволочный резистор нежелательна, так как приведет к снижению точности измерений. Микросхему 140УД1208 можно заменить на какой-либо другой ОУ, имеющий цепь установки нуля и способный работать от напряжения ±5 В, а К561ЛН2 можно заменить на любую КМОП микросхему серий 1561, 1554, 74НС, 74АС, содержащую шесть инверторов, например, 74НС14. Применение ТТЛ серий 155, 555, 1533 и др. нежелательно. Микроконтроллер ATtinyl 5L фирмы ATMEL аналога не имеет и заменить его на другой тип, например популярный AT90S2313, невозможно без корректировки программы.

Номинал емкостей конденсаторов С4, С5, С11 уменьшать не следует. Переключатель SA1 должен быть малогабаритным и с минимальной емкостью между выводами.

При программировании микроконтроллера все FUSE биты следует оставить по умолчанию: BODLEVEL=0, BODEN=1, SPIEN=0, RSTDISBL=1, CKSEL1 ...0=00. Калибровочный байт нужно записать в младший байт программы по адресу $000F. Это обеспечит точную установку тактовой частоты 1,6 МГц и, соответственно, частоты возбуждающего напряжения для измерительной схемы на первом диапазоне 800 кГц. В экземпляре ATtinyl 5L, имевшемся у автора, калибровочный байт равен $8В Коды прошивки микроконтроллера можно скачать на ftp сервера журнала "Радио" (см. ), или .

Для наладки необходимо подобрать несколько катушек и конденсаторов со значениями параметров в диапазоне измерения прибора и имеющих минимальный допуск отклонения по номиналу. Если есть возможность, их точные значения следует измерить с помощью промышленного измерителя LC. Это будут ваши "образцовые" элементы. Учитывая, что шкала измерителя линейная, в принципе, достаточно одного конденсатора и одной катушки. Но лучше проконтролировать весь диапазон. В качестве образцовых катушек хорошо подходят нормализованные дроссели типов ДМ, ДП.

Настроив прибор в режиме измерения емкости, следует перевести SA1 в нижнее по схеме положение, замкнуть входные гнезда и нажать SB1. После коррекции нуля на вход подключить образцовую катушку и резистором R11 выставить необходимые показания. Цена младшего разряда — 0,1 мкГн. При этом следует обратить внимание, чтобы сопротивление R11 было не менее 800 Ом, в противном случае следует уменьшить сопротивление резистора R10. Если R11 будет больше 1 кОм, R10 надо увеличить, т. е. R10 и R11 должны быть близки по номиналу. Такая настройка обеспечивает примерно одинаковую постоянную времени "зарядки" и "разрядки" катушки и, соответственно, минимальную погрешность измерения.

Погрешность не хуже ±2...3 % при измерении конденсаторов можно обеспечить без труда, а вот при измерении катушек же все обстоит несколько сложнее. Индуктивность катушки во многом зависит от ряда сопутствующих условий — активное сопротивление обмотки, потери в магнитопроводах на вихревые токи, на гистерезис, магнитная проницаемость ферромагнетиков нелинейно зависит от напряженности магнитного поля и др. Катушки при измерении испытывают воздействие различных внешних полей, а все реальные ферромагнетики имеют довольно высокое значение остаточной индукции. Более подробно процессы, происходящие при намагничивании магнитных материалов, описаны в . В результате воздействия всех этих факторов показания прибора при измерении индуктивности некоторых катушек могут не совпасть с показаниями промышленного прибора, измеряющего комплексное сопротивление на фиксированной частоте. Но не спешите ругать этот прибор и его автора. Просто следует учитывать особенности принципа измерения. Для катушек без магнитопровода, для незамкнутых магнитопроводов и для ферромагнитных магнитопроводов с зазором точность измерения вполне удовлетворительна, если активное сопротивление катушки не превышает 20...30 Ом. А это значит, что индуктивность всех катушек и дросселей высокочастотных устройств, трансформаторов для импульсных источников питания и т. п. можно измерять весьма точно.

А вот при измерении индуктивности малогабаритных катушек с большим числом витков из тонкого провода и замкнутым магнитопроводом без зазора (особенно из трансформаторной стали) будет большая погрешность. Но ведь в реальном приборе условия работы катушки могут и не соответствовать тому идеалу, который обеспечен при измерении комплексного сопротивления. Например, индуктивность обмотки одного из трансформаторов в наличии у автора, измеренная промышленным измерителем LC, оказалась около 3 Гн. При подаче постоянного тока подмагничивания всего 5 мА показания стали около 450 мГн, т. е. индуктивность уменьшилась в 7 раз! А в реальных рабочих устройствах ток через катушки почти всегда имеет постоянную составляющую. Описываемый измеритель показал индуктивность обмотки этого трансформатора 1,5 Гн. И еще неизвестно, какая цифра будет ближе к реальным условиям работы.

Все вышесказанное в той или иной степени справедливо для всех без исключения любительских измерителей LC. Просто их авторы скромно об этом умалчивают. Не в последнюю очередь именно по этой причине функция измерения емкости есть во многих моделях недорогих мультиметров, а измерять индуктивность могут только дорогие и сложные профессиональные приборы. В любительских условиях сделать хороший и точный измеритель комплексного сопротивления очень сложно, проще приобрести промышленный, если он действительно нужен. Если это по тем или иным причинам невозможно, думаю, предлагаемая конструкция может послужить неплохим компромиссом с оптимальным соотношением цены, качества и удобства в эксплуатации.

ЛИТЕРАТУРА

  1. Степанов А. Простой LC-метр. — Радио, 1982, ╧ 3, с. 47, 48.
  2. Семенов Б. Силовая электроника. — М.:СОЛОН-Р, 2001.

08-01-2009

И. Потачин
Радио 12, 1998

Цифровой измерительный прибор в лаборатории радиолюбителя теперь не редкость. Однако не часто им можно измерить параметры конденсаторов и катушек индуктивности, даже если это мультиметр. Описываемая здесь простая приставка предназначена для использования совместно с мультиметрами или цифровыми вольтметрами (например, М-830В, М-832 и им подобными), не имеющими режима измерения параметров реактивных элементов.

Для измерения емкости и индуктивности с помощью несложной приставки использован принцип, подробно описанный в статье А. Степанова "Простой LC-метр" в "Радио" № 3 за 1982 г. Предлагаемый измеритель несколько упрощен (вместо генератора с кварцевым резонатором и декадного делителя частоты применен мультивибратор с переключаемой частотой генерации), но он позволяет с достаточной для практики точностью измерять емкость в пределах 2 пф...1 мкф и индуктивность 2 мкГн... 1 Гн. Кроме того, в нем вырабатывается напряжение прямоугольной формы с фиксированными частотами 1 МГц, 100 кГц, 10 кГц, 1 кГц, 100 Гц и регулируемой амплитудой от 0 до 5 В, что расширяет область применения устройства.

Задающий генератор измерителя (рис. 1) выполнен на элементах микросхемы DD1 (КМОП), частоту на его выходе изменяют с помощью переключателя SA1 в пределах 1 МГц - 100 Гц, подключая конденсаторы С1-С5. С генератора сигнал поступает на электронный ключ, собранный на транзисторе VT1. Переключателем SA2 выбирают режим измерения "L" или "С". В показанном на схеме положении переключателя приставка измеряет индуктивность. Измеряемую катушку индуктивности подключают к гнездам Х4, Х5, конденсатор - к ХЗ, Х4, а вольтметр - к гнездам Х6, Х7.

При работе вольтметр устанавливают в режим измерения постоянного напряжения с верхним пределом 1 - 2В. Следует учесть, что на выходе приставки напряжение изменяется в пределах 0... 1 В. На гнездах Х1, Х2 в режиме измерения емкости (переключатель SA2 - в положении "С") присутствует регулируемое напряжение прямоугольной формы. Его амплитуду можно плавно изменять переменным резистором R4.

Питается приставка от батареи GB1 с напряжением 9 В ("Корунд" или аналогичные ей) через стабилизатор на транзисторе VT2 и стабилитроне VD3.

Микросхему К561ЛА7 можно заменить на К561ЛЕ5 или К561ЛА9 (исключив DD1.4), транзисторы VT1 и VT2-на любые маломощные кремниевые соответствующей структуры, стабилитрон VD3 заменим на КС156А, КС168А. Диоды VD1, VD2 - любые точечные германиевые, например, Д2, Д9, Д18. Переключатели желательно использовать миниатюрные.

Корпус прибора - самодельный или готовый подходящих размеров. Монтаж деталей (рис. 2) в корпусе - навесной на переключателях, резисторе R4 и гнездах. Вариант внешнего вида показан на рисунке. Разъемы ХЗ-Х5 - самодельные, изготовлены из листовой латуни или меди толщиной 0,1...0,2 мм, конструкция их понятна из рис. 3. Для подключения конденсатора или катушки необходимо ввести выводы детали до упора в клиновидный зазор пластин; этим достигается быстрая и надежная фиксация выводов.


Налаживание прибора производят с помощью частотомера и осциллографа. Переключатель SA1 переводят в верхнее по схеме положение и подбором конденсатора С1 и резистора R1 добиваются частоты 1 МГц на выходе генератора. Затем переключатель последовательно переводят в последующие положения и подбором конденсаторов С2 - С5 устанавливают частоты генерации 100 кГц, 10 кГц, 1 кГц и 100 Гц. Далее осциллограф подключают к коллектору транзистора VT1, переключатель SA2 - в положении измерения емкости. Подбором резистора R3 добиваются формы колебаний, близкой к меандру на всех диапазонах. Затем переключатель SA1 снова устанавливают в верхнее по схеме положение, к гнездам Х6, Х7 подключают цифровой или аналоговый вольтметр, а к гнездам ХЗ, Х4 - образцовый конденсатор емкостью 100 пф. Подстройкой резистора R7 добиваются показаний вольтметра 1 В. Потом переводят переключатель SA2 в режим измерения индуктивности и к гнездам Х4, Х5 подключают образцовую катушку с индуктивностью 100 мкГн, резистором R6 устанавливают показания вольтметра, также равные 1 В.

На этом настройка прибора заканчивается. На остальных диапазонах точность показаний зависит только от точности подбора конденсаторов С2 -С5. От редакции. Налаживание генератора лучше начать с частоты 100 Гц, которую устанавливают подбором резистора R1, конденсатор С5 не подбирают. Следует помнить, что конденсаторы СЗ - С5 должны быть бумажными или, что лучше, метаплопленочными (К71, К73, К77, К78). При ограниченных возможностях в подборе конденсаторов можно использовать и переключение секцией SA1.2 резисторов R1 и их подбор, а число конденсаторов надо уменьшить до двух (С1, СЗ). Номиналы сопротивлений резисторов составят в этом: случав 4,7: 47; 470 к0м.

  • Собрал эту схему, не работает. Закралось сомнение, а не перепутана ли кое-где полярность. По -моему есть несоответствие. Кто-то может авторитетно прокомментировать?
  • а диоды Д2б где нашли? раритет:D а в обще сомнения меня берут по поводу работоспособности данной схемы
  • В своё время купил набор конструктор функциональный генератор. Схема похожа. Иногда пользуюсь Терпимо работает.Зимой весной летом осенью приходиться подстраивать.Работаю на застеклённом балконе Пришлось выводить на переднюю панель подстройку рабочей точки. Покрутите R1. Но при уходе рабочей точки будут плыть показания. Посмотрите есть неплохие схемы с делением исходной частоты.
  • А что, в квартире температура в зависимости от времени года сильно меняется? У меня не значительно, наверное, подстраивать не пришлось бы, я полагаю. Пока прибор забросил-летом нет времени настраивать.Весной было, но почему-то не получал на ящик уведомления о сообщениях. По диодам Д2... Да никакой он не дифицитный. У меня их коробка. Да и вообще, деталей прошлых лет в достатке.
  • Странно, что автор или публиковавшие материал не заметили досадной ошибки в принципиальной схеме!? Минус питания измерительного прибора посажен на общую шину, а в соответствии с этим, должно быть по схеме: X6 "+", а X7 "-".
  • Всем доброй ночи, подскажите пожалуйста можно ли нетбуком прошить телефон? Заранее большое спасибо!!!
  • Можно, только не в этой теме... . :D
  • Мне больше вот эта схема нравится... . :)
  • пРИВЕТ ВСЕМ! Мужики, а можно и купить такой прибор: http://monitor.espec.ws/section30/topic187691p20.html Очень недорого. Если там в теме посмотреть, то у меня такойже, а количество желающих приобрести растёт. Сразу предупреждаю- Я НЕ РЕКЛАМЩИК и ЭТО НЕ РЕКЛАМА! :)
  • Здесь обсуждаем то, что можно своими руками сделать... . :)

Андрей Барышев, г. Выборг

Этот прибор можно собрать в небольшом корпусе, например от китайского цифрового тестера. Он позволяет измерять емкости от 10 пикофарад до 1 микрофарады, индуктивности от 100 мкГн до 1 Гн, эквивалентное последовательное сопротивление (ESR) электролитических конденсаторов, выдает пять фиксированных частот (100 Гц, 1 кГц, 10 кГц, 100 кГц, 1 МГц) с амплитудой, регулируемой от 0 до 4…5 В. Кроме того, с его помощью можно проверить катушки индуктивности на отсутствие короткозамкнутых витков и измерить эквивалентное последовательное сопротивление (ESR) конденсаторов, не выпаивая их из плат, что позволяет за считанные минуты проверить, например, конденсаторы импульсного блока питания или телевизора, где именно показатель ESR имеет определяющее значение.

Схема прибора приведена на Рисунке 1.

Рисунок 1.

В основу работы прибора заложен принцип измерения постоянной составляющей сигнала генератора. На измерительную головку поступает постоянное напряжение, зависящее от величины измеряемой индуктивности или емкости. Чем больше номинал измеряемого элемента, тем на больший угол отклонится стрелка.

Широкополосный перестраиваемый генератор собран на цифровой микросхеме DD1, содержащей четыре логических элемента И-НЕ (можно ИЛИ-НЕ). В качестве такой микросхемы применимы, например, К561ЛА7 , К564ЛА7, К176ЛА7 (или с элементами ИЛИ-НЕ, например, К561ЛЕ5), питающее напряжение которых лежит в пределах 5..9 В. Переключением конденсаторов С1 - С5 задается частота генератора и предел измерения номинала емкости или индуктивности. Эти конденсаторы должны быть бумажными или, что лучше, металлопленочными (К71, К73, К77, К78). Далее через электронный ключ на транзисторе VТ1 сигнал генератора поступает на переключатель вида измерений S2 - «L/C» или «ЕSR». Переключателем S3 выбирается режим измерения индуктивности или емкости, также в режиме измерения емкости можно снимать с гнезда «F» пять вышеуказанных фиксированных частот, а резистором P2 регулировать выходное напряжение сигнала от 0 до 4 … 5 В.

При показанном на схеме положении переключателей S1 и S2 прибор работает в режиме измерения индуктивности.

На транзисторе VТ2 собран параметрический стабилизатор напряжения, что необходимо для стабильности генерируемой частоты и, следовательно, точности измерений. Выходное напряжение стабилизатора определяется типом стабилитрона VD1 и может лежать в пределах от 4.5 до 7.5 В (стабилитроны типа КС147, КС156, КС162, КС168, Д814А или другие с теми же напряжениями стабилизации). Для лучшей стабилизации напряжения и, соответственно, большей точности измерений желательно использовать стабилитроны типа КС с напряжением, близким к 6 В (КС156, КС162), так как они обладают лучшей термостабильностью параметров.

При измерениях конденсаторы подключаются к гнездам «Сх» и «Общ. Сх/Lx», индуктивности, соответственно, к «Lx» и «Общ. Cx/Lx». Гнездо «Lx» является также общим гнездом (GND) для генератора фиксированных частот и для измерения ESR электролитических конденсаторов. В качестве этих гнезд можно использовать уже установленные в корпусе тестера (если для данного прибора будет использоваться такой корпус). Нужно будет только добавить гнездо выхода генератора «F» аналогичного типа. В качестве переключателей S1, S2 и S3 можно применить любые подходящие на нужное количество контактов, например широко распространенные в свое время П2К или аналогичные импортные, а для переключения частоты генератора (коммутация конденсаторов С1 - С5) удобно использовать малогабаритные переключатели галетного типа (пример такого переключателя показан на Рисунке 2).

Диоды D1, D2 и D3 - германиевые, типа Д2, Д9, Д18, Д310, Д311, ГД507. В качестве измерительного прибора можно применить микроамперметр, например, стрелочный индикатор уровня записи от старого магнитофона или измерительную головку от небольшого стрелочного тестера.

Настройка измерителя С и L производится при помощи частотомера и вольтметра (можно использовать любой программный частотомер в компьютере). Переключатель S3 ставится в положение «С», а диапазон измерений (S1) - «1Гн/1мФ/100Гц». Частотомер подключают к гнездам «F» и «GND», и регулировкой резистора P1 6.8 кОм выставляется частота 100 Гц. Далее диапазон измерений переключается в положения 1 кГц, 10 кГц, 100 кГц, 1 МГц и подбором соответствующих конденсаторов С1 - С5 выставляются эти частоты. От точности подбора конденсаторов будет в дальнейшем зависеть и точность измерений прибора. При наличии осциллографа будет полезно посмотреть форму сигнала генератора на коллекторе транзистора VТ1. Подбором резистора R2 можно добиться формы сигнала, близкой к меандру на всех диапазонах измерений. После этого снова следует включить диапазон«1Гн/1мФ/100Гц», а к гнездам «Сх» подключить образцовый конденсатор емкостью 1 мФ. Подстроечным резистором VR2 следует установить отклонение стрелки прибора в конец шкалы. Далее подключаем емкости 0.1, 0.2, 0.3 … 0.9 мкФ и ставим на шкале прибора соответствующие метки (такие емкости можно составить из параллельно включенных конденсаторов номиналом по 0.1 мФ). Затем аналогичным образом подключаем к гнездам «Lx» образцовую катушку индуктивности 1 Гн и подстроечным резистором VR1 также выставляем стрелку прибора в конец шкалы. Надо заметить, что с наличием нужных для калибровки индуктивностей у меня лично дело обстоит сложнее, чем с конденсаторами, поэтому за несколько лет благополучного пользования прибором этот режим измерений так и не отградуирован (что можно видеть на фото). Но даже при не совсем точной калибровке шкалы прибор позволяет, тем не менее, с довольно высокой точностью подбирать парные элементы с одинаковыми или очень близкими номиналами.

При переключении в режим измерения «ESR» (переключатель S2) сигнал генератора поступает на обмотку трансформатора Tr1 через подстроечный резистор VR3. При этом также происходит перекоммутация измерительной головки. Частота, при которой измеряется эквивалентное последовательное сопротивление электролитических конденсаторов, составляет 100 кГц. Поэтому следует выставить соответствующий диапазон измерений («1мГ/1000пФ/100кГц/ESR») и поставить переключатель S3 в режим измерения «С».

Эта часть прибора в особой настройке не нуждается, следует просто выставить стрелку прибора в конец шкалы подстроечным резистором VR3 при разомкнутых входных контактах «ESR». Для градуировки используем резисторы 0.5, 2, 5 и 10 Ом. Подключаем их поочередно к контактам «ESR» и делаем на шкале соответствующие метки. Ниже приведены значения «нормальных» сопротивлений (ESR) для конденсаторов различных номиналов:

  • 1 … 100 мкФ - не более 5 Ом;
  • 100 … 1000 мкФ - не более 2.5 Ом;
  • 1000 … 10,000 мкФ - не более 1 Ом.

(Следует заметить, что для очень малогабаритных конденсаторов и для конденсаторов номиналом 4.7 мкФ × 200 В сопротивление 5 Ом является нормальным).

В измерителе ESR использованы также германиевый диод D3 и шунтирующие измерительную головку диоды D4 и D5 типа КД521 (КД522), защищающие измерительную головку от напряжения разряда конденсатора в том случае, если он стоит на плате и не разряжен. Тем не менее, следует обязательно закоротить выводы проверяемого конденсатора перед его проверкой, чтобы он полностью разрядился! Особенно это касается конденсаторов на высокие напряжения и большой емкости, поскольку разрядный ток у них достаточно велик для того, чтобы сжечь и диоды и головку.

Трансформатор намотан на ферритовом кольце внешним диаметром 10 … 15 мм, значение магнитной проницаемости и размер некритичны. Можно использовать кольца от дросселей материнской платы компьютера, маломощных импульсных блоков питания и т.д. Первичная обмотка (к которой подключается проверяемый конденсатор) имеет 10 витков провода ПЭВ-0.4…0.5, вторичная (к которой подключается измерительный прибор) - 200 витков ПЭВ-0.1 …0.15. В зависимости от применяемого стрелочного прибора и тока полного отклонения его стрелки, может потребоваться корректировка количества витков первичной обмотки (если не удастся выставить стрелку в конец шкалы подстроечным резистором VR3), поэтому сначала лучше наматывать вторичную обмотку, а поверх нее - первичную.

Прибором можно также проверить катушку индуктивности или, например, трансформатор на наличие короткозамкнутых витков. Для этого ее подключают к гнездам «ESR». Катушки малой индуктивности проверяют, как и электролитические конденсаторы, при частоте 100 кГц, а большие - при частоте 1 кГц. У нормальной катушки высокое реактивное сопротивление, и стрелка останется в конце шкалы. При наличии же короткозамкнутых витков сопротивление резко уменьшается, и прибор покажет сопротивление в единицы Ом.

Питать прибор можно от батареи типа «Крона» или от сетевого адаптера с напряжением холостого хода (без нагрузки) от 9 до 18 В. При нормальных, исправных деталях ток, потребляемый прибором, не превышает 7-9 мА. К гнездам прибора подключаются измерительные щупы с зажимами «крокодил», провода для щупов следует использовать диаметром 0.7 … 1 мм и как можно меньшей длины, чтобы они не вносили значительной погрешности при измерениях.

Вместо измерительной головки (микроамперметра) можно, конечно, использовать обычный тестер в режиме измерения напряжений 1-2 В. Тогда при настройке нужно будет выставить подстроечными резисторами «L», «C» и «ESR» значение 1 В. Однако применение стрелочного индикатора предпочтительнее, так как шкала измерений нелинейна. Погрешность измерений прибора зависит исключительно от качества применяемых деталей и точности их подбора/настройки.

Конструкция

Внешний вид прибора показан на Рисунке 3. Печатная плата разрабатывалась под конкретные переключатели и корпус и здесь не приводится. (Корпуса такого размера и формы вряд ли сейчас можно найти). Деталей немного, и монтаж легко можно сделать навесным способом, прямо на контактах переключателей и переменных резисторов.

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться .