Белые диоды. Сверхъяркие светодиоды белого свечения. Схемы подключения светодиодов

LED (Lighting Emission Diode) - светодиоды с интенсивным светоизлучением хорошо всем известны. Примерно 10 лет назад (у нас в России) они произвели «тихую революцию в освещении», особенно там, где нужна мобильность, низкий удельный расход энергии, надежность и долгий срок службы. Казалось, что идеальный источник света, который жаждали получить, вело и просто туристы, а также охотники и рыболовы, спелеологи и альпинисты уже «здесь и сейчас». И достаточно протянуть руку, поднакопив чуток убитых енотов, и будет «на земли мир, в человецех благоволение». Теперь, можно сказать, что эти 10 лет не прошли даром и, светодиодная действительность оказалось интересна, разнообразна и предоставляет новые возможности, которые, ранее даже не приходили в голову.


Рис. 2 Конструкция светодиода Luxeon фирмы Lumileds lighting.* («Описание и принцип работы светодиодных светильников» Группа Энергосберегающих Компаний)


Рис. 3 Синий светодиод с монохроматическим излучением. . («LED - технология, принцип работы. Плюсы и минусы LED. » ).

ПРИНЦИП РАБОТЫ .

Светодиод, - прежде всего диод. То есть этакий хитрый камешек с p-n-переходом внутри. А другими словами, контакт двух полупроводников с разными типами проводимости. Который, при некоторых условиях, излучает свет в процессе рекомбинации (взаимного конструктивного самоубийства) электронов и дырок.
Обычно, чем больше ток через светодиод, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени и на выходе излучается больше света. Но ток нельзя сильно увеличивать, - из-за внутреннего сопротивления полупроводника и p-n-перехода светодиод может перегреваться, что приводит к его ускоренному старению или выходу из строя.
Для получения значимого светового потока, создают многослойные полупроводниковые структуры - гетероструктуры. За развитие полупроводниковых гетероструктур для высокоскоростной оптоэлектроники Жорес Алферов , российский физик, получил Нобелевскую премию в 2000 году.

ДВА СЛОВА ЗА ИСТОРИЮ.

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены в 1962 году. В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах и системах сигнализации. В 1993 году в компании Nichia (Япония) создали первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зеленый цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем, технология быстро развивалась и к 2005 году световой выход светодиодов достиг значения более 100 лм/Вт.

БЕЛЫЙ СВЕТ.

Обычный цветной светодиод излучает в узком спектре световых волн (монохроматическое излучение). Это хорошо для устройств сигнализации. А для освещения нужны белые светодиоды и применяют разные технологии..
Например, — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет.


Рис. 4 Спектр излучения RGB светодиода . («Википедия»)

Или, положим, используется люминофор, точнее, несколько люминофоров наносятся на светодиод и, в результате смешения цветов получается белый или близкий к белому свет. Белые светодиоды с люминофорами дешевле, чем RGB матрицы, что позволило использовать их для освещения.


Рис. 5 Спектр излучения белого светодиода с люминофором.* («Википедия»)


Рис. 6 Белый светодиод с люминофором. Схема одной из конструкций белого светодиода.

МРСВ - печатная плата с высокой тепловой проводимостью. * («Википедия»)

Вольтамперная характеристика светодиодов в прямом направлении нелинейная и ток начинает проходить, с некоторого порогового напряжения. На основных режимах излучения светодиода ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. А поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэ-тому ток приходится стабилизировать. Яркость свечения светодиодов можно, например, регулировать методом широтно-импульсной модуляции (ШИМ), для чего необходимо электронное устройство, подающее на светодиод импульсные высокочастотные сигналы. В отличие от ламп накаливания цветовая температура при регулировании яркости у светодиодов изменяется очень мало.

Достоинства и недостатки люминофорных светодиодов.

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и потери поэтому относительно малы..

  1. Основное преимущество белых светодиодов — высокий КПД, низкое удельное энергопотребление и высокая световая отдача - 160-170 Люмен/Ватт.
  2. Высокая надежность и длительный срок службы.
  3. Малый вес и размеры светодиодов позволяют ипользовать их в малогабаритных переносных фонарях.
  4. Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вредных последствий, так как ультрафиолет, особенно в присутствии озона, сильно влияет на органику, а инфракрасное излучение может привести к ожогам.
  5. Показатель удельной плотности мощности, характеризующий плотность светового потока, у стандартной люминесцентной лампы составляет 0,1-0,2 Вт/см², а у современного белого светодиода около 50 Вт/см².
  6. Работа при отрицательных температурах без снижения, а зачастую и с улучшением параметров.
  7. Светодиоды — безынерционные источники света, они не требуют времени на прогрев или выключение, как например люминесцентные лампы и количество циклов включения и выключения не оказывает влияния на их надежность.
  8. Светодиод механически прочен и исключительно надежен.
  9. Легкость регулирования яркости.
  10. Светодиод — низковольтный электроприбор, а стало быть, безопасный.
  11. Низкая пожароопасность, возможность использования в условиях взрывоопасности.
  12. Влагостойкость, стойкость к воздействию агрессивных сред.

Но есть и мелкие недостатки:

  1. Белые светодиоды в производстве дороже и сложнее ламп накаливания, хотя цена их постепенно снижается.
  2. Невысокое качество цветопередачи, которое, то же, понемногу улучшается.
  3. Мощные светодиоды требуют хорошей системы охлаждения.
  4. Быстрое ухудшение характеристик и даже выход из строя при повышенных температурах внешней среды более 60 — 80°C.
  5. Люминофоры также не любят высокой температуры, т.к. коэффициент преобразования и спектральные характеристики люминофора ухудшаются.
  6. Корпус светодиода делают из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, которая стареет и под воздействием температуры тускнет и желтеет, поглощая часть светового потока.
  7. Современный, мощный, сверхяркий светодиод может ослепить и повредить зрение человека.
  8. Контакты подвержены коррозионным отказам. Светоотражатели (обычно из пластмассы, покрытые тонким слоем алюминия), при повышенной температуре, ухудшают свои свойства со временем, а яркость и качество излучаемого света постепенно ухудшаются.

РЕАЛЬНЫЙ СРОК СЛУЖБЫ БЕЛЫХ СВЕТОДИОДОВ.


Рис. 7 Снижение светоотдачи в процессе эксплуатации и поведение при выходе из строя ламп накаливания (INC), флуоресцентных ламп (FL), высокоинтенсивных газоразрядных ламп (HID) и LED-ламп (масштаб не соблюден, приведен вид типовых кривых).

Журнал «Время электроники», Статья «Определение срока службы светодиодов»
Автор Эрик Ричман (Eric Richman ), старший научный сотрудник, Pacific Northwest National Laboratories (PNNL )

Про100 000 часов службы светодиодов мы знаем уже много лет. А как на самом деле?
«На заре светодиодов, наиболее часто встречаемая долговечность работы составляла 100000 часов. При этом никто так и не смог объяснить, откуда взялось это магическое число. Скорее всего, оно было продиктовано рынком, а не наукой. Первым производителем светодиодов, указавшим продолжительность эксплуатации, исходя из реальных технических параметров, стала Филипс Люмиледс, со своим детищем- светодиодом Luxeon. Долговечность первых устройств Luxeon, с заданным управляющим током 350 мА и температурой перехода 90 градусов цельсия, оценивалась в 50000 часов. Это значит, что после 50000 часов эксплуатации светодиода в заданных условиях его световой поток снизится до 70% от первоначальной.»
Статья «Неизведанные воды: определение долговечности LED светильников», Журнал «Время электроники», Тимур Набиев.

В настоящее время нет никакого стандарта определяющего для светодиодов, что такое собственно «срок службы». Нет также стандартов, определяющих количественно изменение цвета светодиода со временем. Не определено, как должен работать светодиод по истечении этого срока. Некоторые ведущие компании были вынуждены самостоятельно определять критерии для срока службы. Например, было выбрано два пороговых значения светового потока: - 30% и 50%, по достижению которых светодиод считается вышедшим из строя. И зависят эти значения от восприятия человеческим глазом излучаемого света.
1) - 30% уменьшение светового потока отраженного светодиодного света. То есть, когда светодиодный фонарь освещает дорогу, окружающие предметы и т.п.
2) - 50% уменьшение светового потока, когда используется прямой свет, например в светофорах, дорожных знаках, габаритных огнях автомобилей....
А другие компании первого ряда выбирают только одно пороговое значение - 50%.
Причем, деградация светодиодов и светодиодных фонарей происходит на всех уровня, начиная с p-n перехода и заканчивая прозрачной передней пластмассовой линзой корпуса фонаря. Причем, маломощные сигнальные и индикаторные светодиоды могут служить десятилетиями. А сверхяркие современные светодиоды, которые часто работают в напряженном режиме, как по току, так и по температуре и гораздо быстрее теряют свою яркость. Таким образом, реальный срок службы качественных современных светодиодов от нескольких месяцев до пяти - шести лет в непрерывном режиме работы. Например, фирма Petzl заявляет срок службы своих светодиодов в фонарях не менее 5000 часов. Кстати, ведущие фирмы нередко заявляют меньший срок службы своих устройств, чем у «супер-пупер-бюджетных», нередко азиатских производителей, которые просто форсируют величину тока и добиваются яркого свечения. При покупке фонарей, все характеристики светодиодов соответствуют паспортным, в котором, обязательно пишут про магические 100000 часов. Но реальный срок службы таких светодиодов может не превысить 1000…1500 часов и за это время световой поток снижается минимум в 2 раза.

БАТАРЕЙКИ И АККУМУЛЯТОРЫ.

Во время работы, батареи и аккумуляторы разряжаются, питающее напряжение уменьшается, яркость светодиодов и эффективный световой поток постепенно снижается.

Кривая уменьшения яркости при естественном разряде батарей.

Яркость с электронной регулировкой. Освещенность в 0,25 люкс измеряется на расстоянии 2 метра от фонаря. (Такую освещенность дает луна во время полнолуния).

Для улучшения эффективной светоотдачи применяют электронную регулировку (стабилизацию) питающего напряжения. Сила тока контролируется специальной микросхемой, благодаря чему обеспечивается стабильная яркость в течении всего времени работы. Идея была впервые разработанна фирмой Petzl. Благодаря электронной схеме, фонари обладают стабильными характеристиками в течении всего времени работы, а затем переходят в аварийный режим (0.25 люкс). Яркость 0.25 люкс - это освещение, которое дает полная луна высоко над горизонтом в ясную погоду.

Оптимальные источники питания.

1. Для светодиодных фонарей сегодня, это конечно алкалиновые или литиевые (литий-ионные) одноразовые батареи. Литиевые батареи имеют небольшой вес, обладают большой емкостью и хорошо работают при низких температурах. Это, например, Li-MnO2 батареи CR123 или CR2 с напряжением 3В или Li-FeS2 (литий-железодисульфидные) батареи с напряжением 1,5В, но не все светодиодные фонари совместимы с литиевыми батареями - необходимо уточнять в инструкции.
2. Аккумуляторы.

Характеристики

Никель-кадмиевые

Никель-металлгидридные

Литий-
ионные

Номинальное напряжение, В

Типичная емкость, Ач

Удельная энергия:
весовая, Втч/кг
объемная, Втч/дм3

30 - 60
100 -170

40 - 80
150 -240

100 - 180
250 - 400

Максимальный постоян-ный ток разряда, до

5 (10) С

3 С

2 С

Режим заряда

Стандартный: ток 0,1 С 16 ч
Ускоренный: ток 0,3 С 3-4ч
Быстрый:
ток 1С ~1 ч

Стандартный: ток 0,1 С 16 ч
Ускоренный: ток 0,3 С 3-4ч
Быстрый:
ток 1С ~1 ч

Заряд током 0,1- 1 С
до 4,1-4,2 В, далее при постоянном напряжении

Коэффициент отдачи по емкости (Сразряд/Сзаряд)

Диапазон рабочих темпе-ратур, ºС

Саморазряд (в %):
за 1 месяц
за 12 месяцев

4 - 5
10 - 20

Ток 1С означает ток, численно равный номинальной емкости.

* Из статьи: А.А. Тагановой «ЛИТИЕВЫЕ ИСТОЧНИКИ ТОКА ДЛЯ ПОРТАТИВНОЙ ЭЛЕКТРОННОЙ АППАРАТУРЫ»

Никель-кадмиевые (NiCd) имеют небольшой вес и габариты, Плохую экологичность - кадмий страшно вредный для здоровья металл. Взрывоопасны с прочным и герметичным корпусом, имеющие микроклапаны для автоматического сброса газов, но, при этом, достаточно высокую надежность и большие токи зарядки-разрядки. Их часто применяют в бортовой аппаратуре и для устройств, потребляющих большую мощность, например, фонарей для дайвинга. Единственный вид аккумуляторов, которые могут храниться разряженными, в отличие от никель-металл-гидридных аккумуляторов (Ni-MH), которые нужно хранить полностью заряженными и от литий-ионных аккумуляторов (Li-ion), которые необходимо хранить при 40%-ом заряде от ёмкости аккумулятора
Никель-металл-гидридные (Ni-MH), были разработаны для замены никель-кадмиевых (NiCd). NiMH аккумуляторы практически избавлены от «эффекта памяти » а полная разрядка требуется не часто. Экологически безопасны. Наиболее благоприятный режим работы: заряд небольшим током, 0,1 номинальной ёмкости, время заряда — 15-16 часов (рекомендация производителя). Аккумуляторы рекомендуется хранить полностью заряженными в холодильнике, но не ниже 0 С?. Обеспечивают 40-50-процентное преимущество в удельной энергоемкости по сравнению с прежним фаворитом — NiCd. Имеют значительный потенциал для увеличения энергетической плотности. Дружественны к окружающей среде — содержат только умеренные токсины, доступные для вторичной переработки. Недорогие. Доступные в широком диапазоне размеров, параметров и эксплуатационных характеристик.

ГАБАРИТЫ И МИГАЛКИ.

12) TL-LD1000 CatEye

13) RAPID 1 (TL-LD611-F)CatEye

Европейская практика безопасности предполагает использование не только задних, но и передних габаритных фонарей.
Rapid 1 передний (белый) и задний (красный) фонари, с функцией перезарядки аккумуляторных батарей через USB порт и индикатором уровня заряда. Высокая мощность фонаря достигается применением SMD-светодиода и технологии OptiCube ™ . Мерцание CatEye Rapid 1 привлекает внимание автомобилистов и прохожих.
4 режима работы обеспечивают оптимальный выбор параметров, как ночью, так и днем. CatEye Rapid 1 поставляется с низкопрофильным кронштейном SP-12 Flextight ™, который совместим со всеми новыми RM-1.

    Время работы: 5 часов (постоянный режим)

    25 часов (быстрый и импульсный режимы)

    40 часов (мигающий режим)

    Режим памяти освещения (последний включенный вами режим)

    Аккумулятор Li-ion USB - заряжаемый

    Вес около 41 гр. с креплением и аккумулятором

    Клипса на одежду.

14) SOLAR (SL-LD210)CatEye

Велосипедист должен быть виден не только со спины, но и встречным потоком машин, не только ночью, но и днем - со включенным габаритным фонарем.

Один 5мм светодиод включается автоматически в мигающим режиме, при начале движения в темноте. Встроенная солнечная батарея производит зарядку в течение 2 часов в хороших погодных условиях и обеспечивает работу до 5 часов. Существуют модели фронтальной и задней установки, поставляется вместе с новым кронштейном Flextight ™. Вес 44 гр. вместе с кронштейном и аккумулятором

ДИНАМО - ФОНАРИ (ЖУЧКИ).

15) BLUE BIRD


3- светодиода, яркость 6 Лм, 3 режима, два постоянных (1LED и 3LED), один мигающий (3LED), работа после подзарядки: - около 40 минут (3LED); - около 90 минут (1LED), вес с креплением на руль 115г.

Впечатление:

Ну, очень удачный фонарик, ИМХО, и как габарит на велосипеде, так и для освещения в «ручном режиме» в палатке, на привале и вообще. В цивилизованных городских условиях, когда общее освещение есть и при хорошем зрении, может быть даже основным фонарем, особенно если дорога известна. Динамка крутиться легко, не сильно шумит, аккумулятор заряжается быстро. Светит хорошим белым светом. ОК!

16) Зарядное устройство Energenie EG-PC-005 для мобильных телефонов с ручным приводом и фонариком. Устанавливается на велосипеде.


Энергия вырабатывается при помощи динамо-машинки с рукояткой. Вращение рукоятки в течение трех минут заряжает мобильный телефон как минимум на 8 минут разговора. Вращение рукоятки в течение 10 минут обеспечивает яркий свет фонарика как минимум в течение 50 минут.

Технические характеристики

  • Исходящее напряжение - 4,0-5,5V
  • Исходящий ток до 400 mA
  • Встроенный Ni-MH перезаряжаемый аккумулятор 80 mAH допускает, как минимум 500 полных перезарядок
  • 2 фонарика:
    -головной: светодиодный, при максимальном заряде освещает до 10метров.
    -задний: красный светодиод.
  • Два режима: постоянное свечение (3LED), - стробоскоб (3LED)
  • Вес нетто 0,2 кг
    Комплект поставки
  • Зарядное устройство Energenie EG-PC-005 для мобильных телефонов с ручным приводом, устройством крепления на велосипеде и передним фонариком
  • задний фонарик с 1,2м кабелем
  • кабель для телефонов Nokia
  • 6 адаптеров для других телефонов

Впечатление:

Неплохой габарит, годится для освещения в палатке и для всяких хозяйственных нужд. Светодиоды не самые лучшие - с явным синеватым оттенком, что не есть гут. К сожалению, аккумулятор с некоторым трудом справляется с двойной нагрузкой (3 LED ) впереди и красный габарит сзади - и достаточно быстро «садиться». Пришлось отключить и выкинуть красный задний габарит и, ИМХО, стало получше (подольше). Рычаг динамки крутиться легко, шума не много, собственный аккумулятор заряжается без проблем. Приходилось заряжать в походных условиях и мобильник и электронную книгу. При некотором упорстве и терпении сделать это можно, но придется потрудиться. Когда фонарь работет на внешнюю нагрузку, усилие на рычаге значительно возрастет и приходиться слегка попотеть. Но общая оценка данного дивайса - полезная вещь.

17) Зарядное устройство Energenie EG-SC-001 для мобильных телефонов с аккумулятором, заряжаемым от света и от электросети и со встроенным светодиодным фонариком.

Наличие USB разъема позволяет быстро заряжать встроенный аккумулятор оснащённый защитой от перезаряда, глубокого разряда, перегрузки и короткого замыкания. В случае разряда аккумулятора срабатывает система оповещения. Имеет встроенный светодиодный фонарик.

Заряжает следующие мобильные телефоны и снабжен следующими разъемами: Nokia 6101 и 8210 серий, Samsung A288 серии, Mini USB 5pin, Sony Ericsson K750 серии, Micro-USB.

Солнечные элементы Energenie EG-SC-001 позволяет заряжать мобильные устройства в походе, разумеется в солнечную погоду.
Технические характеристики

  • исходящее напряжение - 5,4V
  • исходящий ток до 1400 mA
  • встроенный Li-ion перезаряжаемый аккумулятор 2000 mAH допускает, как минимум 500 полных перезарядок
  • встроенный USB разъем 5-6V
  • яркий светодиодный фонарик
  • размеры: 116*49*26 мм
  • вес 130 г

Комплект поставки

  • Зарядное устройство
  • AC220V-DC5V USB Адаптер питания A черный
  • 5 переходников для зарядки мобильных телефонов
  • Соединительный USB кабель.
Please enable JavaScript to view the

Введение

Эффективность

Световая эффективность, измеряемая в люменах на ватт (лм/Вт, lm/W) - величина, используемая для определения эффективности преобразования энергии (в нашем случае - электрической) в свет. Обычные лампочки накаливания работают в диапазоне 10-15 лм/Bт. Несколько лет назад стандартной величиной эффективности светодиодов было приблизительно 30 лм/Bт. Но к 2006 году эффективность светодиодов белого свечения более чем удвоилась: один из передовых производителей, компания Cree, смогла продемонстрировать на опытных образцах показатель 70 лм/Вт, что представляет 43-процентное увеличение по сравнению с максимальной светоотдачей их серийных белых светодиодов. В декабре 2006 года фирма Nichia анонсировала новые светодиоды белого свечения с достигнутой эффективностью светоотдачи 150 лм/Вт. Данные образцы продемонстрировали световой поток 9,4 лм с цветовой температурой 4600 К при силе тока 20 мА в условиях лаборатории. Заявленная эффективность приблизительно в 11,5 раз выше таковой у ламп накаливания (13 лм/Вт), в 1,7 раза выше, чем у современных люминесцентных ламп (90 лм/Вт). Более того, превышен показатель натриевых ламп высокого давления (132 люмен/ватт), являющихся лучшим по эффективности источником света среди традиционных ламп.

Преимущества

Твердотельный белый свет (SSL - Solid State Light) все еще не является хорошо известным, несмотря на разнообразие способов его получения и реализации через светодиоды. Большинство компаний и проектировщиков знакомы только с традиционным аналоговым белым освещением, без реальной оценки выгодных и полезных альтернатив, обеспечиваемых применением светодиодов. Кроме легко прогнозируемых выгод, которые могут быть получены от твердотельного светодиодного освещения (экономия электроэнергии, длительный срок службы, и т.д.), следует обратить внимание на следующие специфические признаки светодиодов как новых источников белого света:

  • малое тепловыделение и низкое питающее напряжение (гарантирует высокий уровень безопасности);
  • отсутствие стеклянной колбы (определяет очень высокую механическую прочность и надежность);
  • отсутствие разогрева или высоких пусковых напряжений при включении;
  • безынерционность включения/выключения (реакция < 100 нс);
  • не требуется преобразователь постоянного/переменного тока;
  • абсолютный контроль (регулировка яркости и цвета в полном динамическом диапазоне);
  • полный спектр излучаемого света (или, если требуется, специализированный спектр);
  • встроенное светораспределение;
  • компактность и удобство в установке;
  • отсутствие ультрафиолетового и иных вредных для здоровья излучений;
  • не применяется никаких опасных веществ, типа ртути.

Как получить белый свет с использованием светодиодов?

Черный цвет - это отсутствие всех цветов. Когда свет от всех частей цветового спектра накладывается друг на друга (то есть все цвета присутствуют), совокупная смесь кажется белой. Это так называемый полихроматический белый свет. Основными цветами, из которых можно получить все оттенки, являются красный, зеленый и синий (RGB). Вторичные цвета, также называемые дополнительными: сиреневый (смесь красного и синего); голубой (смесь зеленого и синего); и желтый (смесь красного и зеленого). Любой дополнительный цвет и противоположный основной цвет также дают в сумме белый свет (желтый и синий, голубой и красный, сиреневый и зеленый).

Существуют различные способы получения белого света от светодиодов.

Первый - смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, синие и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. В другом, менее распространенном подходе, для получения белого света смешивается излучение светодиодов основных и вторичных цветов.

Во втором способе желтый (или зеленый плюс красный) люминофор наносится на синий светодиод, в результате два или три излучения смешиваются, образуя белый или близкий к белому свет.

Третий способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне, наносятся три люминофора, излучающих, соответственно, синий, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа.

В основе четвертого способа получения белого света с помощью светодиодов, лежит использование полупроводника ZnSe. Структура представляет собой синий светодиод ZnSe, "выращенный" на ZnSe-подложке. Активная область проводника при этом излучает синий свет, а подложка - желтый.

Тип кристалла

Люминофор

Цвет излучения и возможные оттенки

Области применения

Синий и Зеленый

Белый + R, G, B и любые многоцветные комбинации

Подсветка ЖКИ, архитектура, ландшафт, табло и дисплеи

Белый + B, Y и различные многоцветные оттенки

Сине-зеленый

Красный или красно-оранжевый

Белый + B, R и различные многоцветные оттенки

Автомобильное освещение, архитектура, ландшафт

Синие 470-450 нм

Только белый

Общее освещение и подсветка

Ультра-фиолетовый

Белый или различные монохроматические цвета в зависимости от используемого фосфора

Общее освещение и подсветка

Синий / желтый

Белый + синий от эпитаксиального слоя, желтый от подложки

Общее освещение и подсветка

Какой же из способов лучше?

У каждого из них есть свои достоинства и недостатки. Технология смешения цветов в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока, пропускаемого через разные светодиоды. Этим процессом можно управлять вручную или посредством специальной программы. Таким же образом возможно получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, в связи с неравномерным отводом тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет "плывут" за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.

Белые светодиоды с люминофорами (phosphor-converted LEDs) существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них, в принципе, не проблема попасть в точку с координатами (X=0,33, Y=0,33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе (как следствие, не контролируется цветовая температура); и в-третьих - люминофор тоже стареет, причем быстрее, чем сам светодиод.

Белые светодиоды ZnSe обладают рядом преимуществ. Они работают при напряжении 2,7 В и очень устойчивы к статическим разрядам. Светодиоды ZnSe позволяют излучать свет в гораздо более широком диапазоне цветовых температур, чем устройства на основе GaN (3500-8500 К по сравнению с 6000-8500 К). Это позволяет создавать приборы с более "теплым" свечением, которое предпочитают американцы и европейцы. Есть и недостатки: хотя излучатели на основе ZnSe имеют высокий квантовый выход, они недолговечны, имеют большое электрическое сопротивление и пока не нашли коммерческого применения.


Применение

Цветовая температура

Рассмотрим спектр излучения белого светодиода с люминофором как источника полихроматического света. Белые светодиоды позволяют делать выбор в широком диапазоне цветов от "теплого" белого цвета лампы накаливания до "холодного" люминесцентного белого, в зависимости от задач применения.

Эта диаграмма показывает полный диапазон белого от его более теплой области 2800 K, до холодной синевато-белой области 9000 К. Многие оттенки белого уже определены различными источниками света, используемыми в окружающем нас пространстве: офисный, прохладный синевато-белый свет люминесцентных ламп; домашний, желтовато-белый свет ламп накаливания; индустриальный, бриллиантовый сине-белый свет ртутных ламп; желто-белый свет от уличных натриевых ламп высокого давления.

Существует два распространенных пути получения белого цвета свечения достаточной интенсивности с помощью светодиодов. Первый - это объединение в одном корпусе светодиода чипов трех основных цветов - красного, зеленого и синего. Смешением этих цветов получается белый цвет, кроме того, меняя интенсивность основных цветов, получается любой цветовой оттенок, что применяется при изготовлении . Второй путь - использование люминофора для конвертирования излучения синего или ультрафиолетового светодиода в белый цвет. Подобный принцип используется в лампах дневного света. В настоящее время, второй способ превалирует из-за низкой стоимости и бóльшего светового выхода люминофорных светодиодов.

Люминофоры

Люминофоры (термин происходит от латинского lumen - свет и греческого phoros - несущий), это вещества, способные светиться под действием различного рода возбуждений. По способу возбуждения различают фотолюминофоры, рентгенолюминофоры, радиолюминофоры, катодолюминофоры, электролюминофоры. Некоторые люминофоры бывают смешанных типов возбуждения, например, фото-, катодо- и электролюминофор ZnS·Cu. По химической структуре различают органические люминофоры - органолюминофоры, и неорганические - фосфóры. Фосфóры, имеющие кристаллическую структуру, называют кристаллофосфóрами. Отношение излученной энергии к поглощённой называется квантовым выходом.

Свечение люминофора обуславливается как свойствами основного вещества, так и наличием активатора (примеси). Активатор создает в основном веществе (основании) центры свечения. Наименование активированных люминофоров складывается из имени основания и активатора, например: ZnS·Cu,Co означает люминофор ZnS, активированный медью и кобальтом. Если основание смешанное, то перечисляют сначала названия оснований, а затем активаторов, например, ZnS,CdS·Cu,Со.

Возникновение у неорганических веществ люминесцентных свойств, связано с образованием в кристаллической решетке основы люминофора в процессе синтеза структурных и примесных дефектов. Энергия, возбуждающая люминофор, может поглощаться как люминесцентными центрами (активаторное или примесное поглощение), так и основой люминофора (фундаментальное поглощение). В первом случае, поглощение сопровождается либо переходом электронов внутри электронной оболочки на более высокие энергетические уровни, либо полным отрывом электрона от активатора (образуется «дырка»). Во втором случае, при поглощении энергии основой, в основном веществе образуются дырки и электроны. Дырки могут мигрировать по кристаллу и локализоваться на центрах люминесценции. Излучение происходит в результате возвращения электронов на более низкие энергетические уровни или при рекомбинации электрона с дыркой.

Люминофоры, в которых люминесценция связана с образованием и рекомбинацией разноименных зарядов (электронов и дырок), получили название рекомбинационных. Основой для них служат соединения полупро­водникового типа. В этих люминофорах кристаллическая решетка основы является той средой, в которой развивается процесс люминесценции. Это дает возможность, изменяя состав основы, широко варьировать свойства люминофоров. Изменение ширины запрещенной зоны при использовании одного и того же активатора плавно в больших пределах изменяет спектральный состав излучения. В зависимости от применения, предъявляются различные требования к параметрам люминофора: типу возбуждения, спектру возбуждения, спектру излучения, выходу излучения, временным характеристикам (времени нарастания свечения и длительности послесвечения). Наибольшее разнообразие параметров можно получить у кристаллофосфоров, меняя активаторы и состав основания.

Спектр возбуждения различных фотолюминофоров широк, от коротковолнового ультрафиолетового до инфракрасного. Спектр излучения также находится в видимой, инфракрасной или ультрафиолетовой областях. Спектр излучения может быть широким или узким и сильно зависит от концентрации люминофора и активатора, а также от температуры. Согласно правилу Стокса - Ломмеля, максимум спектра излучения смещен от максимума спектра поглощения в сторону длинных волн. Кроме того, спектр излучения обычно имеет значительную ширину. Это объясняется тем, что часть энергии, поглощаемой люминофором рассеивается в его решетке, переходя в тепло. Особое место занимают «антистоксовские» люминофоры, которые излучают энергию в более высокой области спектра.

Энергетический выход излучения люминофора зависит от вида возбуждения, его спектра и механизма преобразования. Он снижается при увеличении концентрации люминофора и активатора (концентрационное тушение) и температуры (температурное тушение). Яркость свечения нарастает с начала возбуждения в течение различного промежутка времени. Длительность послесвечения определяется характером преобразования и временем жизни возбуждённого состояния. Наиболее короткое время послесвечения имеют органолюминофоры, наиболее длительное - кристаллофосфоры.

Значительная часть кристаллофосфоров представляет собой полупроводниковые материалы с шириной запрещенной зоны 1-10 эв, люминесценция которых обусловлена примесью активатора или дефектами кристаллической решётки. В люминесцентных лампах применяются смеси кристаллофосфоров, например, смеси MgWO4 и (ZnBe)2 SiO4·Mn] или однокомпонентные люминофоры, например галофосфат кальция, активированный Sb и Mn. Люминофоры для целей освещения подбираются так, чтобы их свечение имело спектральный состав, близкий к спектру дневного света.

Органические люминофоры могут обладать высоким выходом и быстродействием. Цвет люминофора может быть подобран для любой видимой части спектра. Они применяются для люминесцентного анализа, изготовления люминесцирующих красок, указателей, оптического отбеливания тканей и т.д. Органические люминофоры выпускались в СССР под торговой маркой люминоры.

Люминофор в процессе работы подвержен изменению параметров с течением времени. Этот процесс называется старением (деградацией) люминофора. Старение в основном обусловлено физическими и химическими процессами как в слое люминофора, так и на его поверхности, возникновение безызлучательных центров, поглощение излучения в изменившемся слое люминофора.

Люминофор в светодиоде

Белые светодиоды чаще всего изготавливаются на основе синего кристалла InGaN и желтого люминофора. Желтые люминофоры, применяемые большинством производителей, это модифицированный иттрий-алюминиевый гранат, легированный трехвалентным церием (ИАГ). Спектр люминесценции этого люминофора характеризуется максимумом длины волны 530..560 нм. Длинноволновая часть спектра имеет бóльшую протяженность, чем коротковолновая. Модифицирование люминофора добавками гадолиния и галлия, позволяет сдвигать максимум спектра в холодную область (галлий) или в теплую (гадолиний).

Интересны спектральные данные люминофора, применяемого в Cree. Судя по спектру, кроме ИАГ в состав люминофора белого светодиода добавлен люминофор со смещенным в красную область максимумом излучения.

В отличие от люминесцентных ламп, используемый в светодиодах люминофор имеет бóльший срок службы, и старение люминофора определяется в основном температурой. Люминофор чаще всего наносят непосредственно на кристалл светодиода, который сильно нагревается. Другие факторы воздействия на люминофор имеют значительно меньшее значение для срока службы. Старение люминофора приводит не только к уменьшению яркости светодиода, но и к изменению оттенка его свечения. При сильной деградации люминофора хорошо заметен синий оттенок свечения. Это связано с изменением свойств люминофора, и с тем, что в спектре начинает доминировать собственное излучение светодиодного чипа. С внедрением технологии (remote phosphor), влияние температуры на скорость деградации люминофора снижается.

Интенсивность фотосинтеза под красным светом максимальна, но под одним только красным растения гибнут либо их развитие нарушается. Например, корейские исследователи показали, что при освещении чистым красным масса выращенного салата больше, чем при освещении сочетанием красного и синего, но в листьях значимо меньше хлорофилла, полифенолов и антиоксидантов. А биофак МГУ установил, что в листьях китайской капусты под узкополосным красным и синим светом (по сравнению с освещением натриевой лампой) снижается синтез сахаров, угнетается рост и не происходит цветения.

Рис. 1 Леанна Гарфилд, Tech Insider - Aerofarms

Какое нужно освещение, чтобы при умеренном энергопотреблении получить полноценно развитое, большое, ароматное и вкусное растение?

В чем оценивать энергетическую эффективность светильника?

Основные метрики оценки энергетической эффективности фитосвета:

  • Photosynthetic Photon Flux (PPF ), в микромолях на джоуль, т. е. в числе квантов света в диапазоне 400–700 нм, которые излучил светильник, потребивший 1 Дж электроэнергии.
  • Yield Photon Flux (YPF ), в эффективных микромолях на джоуль, т. е. в числе квантов на 1 Дж электроэнергии, с учетом множителя - кривой McCree .
PPF всегда получается немного выше, чем YPF (кривая McCree нормирована на единицу и в большей части диапазона меньше единицы), поэтому первую метрику выгодно использовать продавцам светильников. Вторую метрику выгоднее использовать покупателям, так как она более адекватно оценивает энергетическую эффективность.

Эффективность ДНаТ

Крупные агрохозяйства с огромным опытом, считающие деньги, до сих пор используют натриевые светильники. Да, они охотно соглашаются повесить над опытными грядками предоставляемые им светодиодные светильники, но не согласны за них платить.

Из рис. 2 видно, что эффективность натриевого светильника сильно зависит от мощности и достигает максимума при 600 Вт. Характерное оптимистичное значение YPF для натриевого светильника 600–1000 Вт составляет 1,5 эфф. мкмоль/Дж. Натриевые светильники 70–150 Вт имеют в полтора раза меньшую эффективность.


Рис. 2. Типичный спектр натриевой лампы для растений (слева) . Эффективность в люменах на ватт и в эффективных микромолях серийных натриевых светильников для теплиц марок Cavita , E-Papillon , «Галад» и «Рефлакс» (справа)

Любой светодиодный светильник, имеющий эффективность 1,5 эфф. мкмоль/Вт и приемлемую цену, можно считать достойной заменой натриевого светильника.

Сомнительная эффективность красно-синих фитосветильников

В этой статье не приводим спектров поглощения хлорофилла потому, что ссылаться на них в обсуждении использования светового потока живым растением некорректно. Хлорофилл invitro , выделенный и очищенный, действительно поглощает только красный и синий свет. В живой клетке пигменты поглощают свет во всем диапазоне 400–700 нм и передают его энергию хлорофиллу. Энергетическая эффективность света в листе определяется кривой «McCree 1972 » (рис. 3).


Рис. 3. V (λ) - кривая видности для человека; RQE - относительная квантовая эффективность для растения (McCree 1972); σ r и σ fr - кривые поглощения фитохромом красного и дальнего красного света; B (λ) - фототропическая эффективность синего света

Отметим: максимальная эффективность в красном диапазоне раза в полтора выше, чем минимальная - в зеленом. А если усреднить эффективность по сколько-нибудь широкой полосе, разница станет еще менее заметной. На практике перераспределение части энергии из красного диапазона в зеленый энергетическую функцию света иногда, наоборот, усиливает. Зеленый свет проходит через толщу листьев на нижние ярусы, эффективная листовая площадь растения резко увеличивается, и урожайность, например, салата повышается .

Освещение растений белыми светодиодами

Энергетическая целесообразность освещения растений распространенными светодиодными светильниками белого света исследована в работе .

Характерная форма спектра белого светодиода определяется:

  • балансом коротких и длинных волн, коррелирующим с цветовой температурой (рис. 4, слева);
  • степенью заполненности спектра, коррелирующей с цветопередачей (рис. 4, справа).


Рис. 4. Спектры белого светодиодного света с одной цветопередачей, но разной цветовой температурой КЦТ (слева) и с одной цветовой температурой и разной цветопередачей R a (справа)

Различия в спектре белых диодов с одной цветопередачей и одной цветовой температуры едва уловимы. Следовательно, мы можем оценивать спектрозависимые параметры всего лишь по цветовой температуре, цветопередаче и световой эффективности - параметрам, которые написаны у обычного светильника белого света на этикетке.

Результаты анализа спектров серийных белых светодиодов следующие:

1. В спектре всех белых светодиодов даже с низкой цветовой температурой и с максимальной цветопередачей, как и у натриевых ламп, крайне мало дальнего красного (рис. 5).


Рис. 5. Спектр белого светодиодного (LED 4000K R a = 90) и натриевого света (HPS ) в сравнении со спектральными функциями восприимчивости растения к синему (B ), красному (A_r ) и дальнему красному свету (A_fr )

В естественных условиях затененное пологом чужой листвы растение получает больше дальнего красного, чем ближнего, что у светолюбивых растений запускает «синдром избегания тени» - растение тянется вверх. Помидорам, например, на этапе роста (не рассады!) дальний красный необходим, чтобы вытянуться, увеличить рост и общую занимаемую площадь, а следовательно, и урожай в дальнейшем.

Соответственно, под белыми светодиодами и под натриевым светом растение чувствует себя как под открытым солнцем и вверх не тянется.

2. Синий свет нужен для реакции «слежение за солнцем» (рис. 6).


Рис. 6. Фототропизм - разворот листьев и цветов, вытягивание стеблей на синюю компоненту белого света (иллюстрация из «Википедии»)

В одном ватте потока белого светодиодного света 2700 К фитоактивной синей компоненты вдвое больше, чем в одном ватте натриевого света. Причем доля фитоактивного синего в белом свете растет пропорционально цветовой температуре. Если нужно, например, декоративные цветы развернуть в сторону людей, их следует подсветить с этой стороны интенсивным холодным светом, и растения развернутся.

3. Энергетическая ценность света определяется цветовой температурой и цветопередачей и с точностью 5 % может быть определена по формуле:

где - световая отдача в лм/Вт, - общий индекс цветопередачи, - коррелированная цветовая температура в градусах Кельвина.

Примеры использования этой формулы:

А. Оценим для основных значений параметров белого света, какова должна быть освещенность, чтобы при заданной цветопередаче и цветовой температуре обеспечить, например, 300 эфф. мкмоль/с/м2:


Видно, что применение теплого белого света высокой цветопередачи позволяет использовать несколько меньшие освещенности. Но если учесть, что световая отдача светодиодов теплого света с высокой цветопередачей несколько ниже, становится понятно, что подбором цветовой температуры и цветопередачи нельзя энергетически значимо выиграть или проиграть. Можно лишь скорректировать долю фитоактивного синего или красного света.

Б. Оценим применимость типичного светодиодного светильника общего назначения для выращивания микрозелени.

Пусть светильник размером 0,6 × 0,6 м потребляет 35 Вт, имеет цветовую температуру 4000 К , цветопередачу Ra = 80 и световую отдачу 120 лм/Вт. Тогда его эффективность составит YPF = (120/100)⋅(1,15 + (35⋅80 − 2360)/4000) эфф. мкмоль/Дж = 1,5 эфф. мкмоль/Дж. Что при умножении на потребляемые 35 Вт составит 52,5 эфф. мкмоль/с.

Если такой светильник опустить достаточно низко над грядкой микрозелени площадью 0,6 × 0,6 м = 0,36 м 2 и тем самым избежать потерь света в стороны, плотность освещения составит 52,5 эфф. мкмоль/с / 0,36м 2 = 145 эфф. мкмоль/с/м 2 . Это примерно вдвое меньше обычно рекомендуемых значений. Следовательно, мощность светильника необходимо также увеличить вдвое.

Прямое сравнение фитопараметров светильников разных типов

Сравним фитопараметры обычного офисного потолочного светодиодного светильника, произведенного в 2016 году, со специализированными фитосветильниками (рис. 7).


Рис. 7. Сравнительные параметры типичного натриевого светильника 600Вт для теплиц, специализированного светодиодного фитосветильника и светильника для общего освещения помещений

Видно, что обычный светильник общего освещения со снятым рассеивателем при освещении растений по энергетической эффективности не уступает специализированной натриевой лампе. Видно также, что фитосветильник красно-синего света (производитель намеренно не назван) сделан на более низком технологическом уровне, раз его полный КПД (отношение мощности светового потока в ваттах к мощности, потребляемой из сети) уступает КПД офисного светильника. Но если бы КПД красно-синего и белого светильников были одинаковы, то фитопараметры тоже были бы примерно одинаковы!

Также по спектрам видно, что красно-синий фитосветильник не узкополосен, его красный горб широк и содержит гораздо больше дальнего красного, чем у белого светодиодного и натриевого светильника. В тех случаях, когда дальний красный необходим, использование такого светильника как единственного или в комбинации с другими вариантами может быть целесообразно.

Оценка энергетической эффективности осветительной системы в целом:


Рис. 8. Аудит системы фитоосвещения

Следующая модель UPRtek - спектрометр PG100N по заявлению производителя измеряет микромоли на квадратный метр, и, что важнее, световой поток в ваттах на квадратный метр.

Измерять световой поток в ваттах - превосходная функция! Если умножить освещаемую площадь на плотность светового потока в ваттах и сравнить с потреблением светильника, станет ясен энергетический КПД осветительной системы. А это единственный на сегодня бесспорный критерий эффективности, на практике для разных осветительных систем различающийся на порядок (а не в разы или тем более на проценты, как меняется энергетический эффект при изменении формы спектра).

Примеры использования белого света

Описаны примеры освещения гидропонных ферм и красно-синим, и белым светом (рис. 9).


Рис. 9. Слева направо и сверху вниз фермы: Fujitsu , Sharp , Toshiba , ферма по выращиванию лекарственных растений в Южной Калифорнии

Достаточно известна система ферм Aerofarms (рис. 1, 10), самая большая из которых построена рядом с Нью-Йорком. Под белыми светодиодными лампами в Aerofarms выращивают более 250 видов зелени, снимая свыше двадцати урожаев в год.


Рис. 10. Ферма Aerofarms в Нью-Джерси («Штат садов») на границе с Нью-Йорком

Прямые эксперименты по сравнению белого и красно-синего светодиодного освещения
Опубликованных результатов прямых экспериментов по сравнению растений, выращенных под белыми и красно-синими светодиодами, крайне мало. Например, мельком такой результат показала МСХА им. Тимирязева (рис. 11).


Рис. 11. В каждой паре растение слева выращено под белыми светодиодами, справа - под красно-синими (из презентации И. Г. Тараканова, кафедра физиологии растений МСХА им. Тимирязева)

Пекинский университет авиации и космонавтики в 2014 году опубликовал результаты большого исследования пшеницы, выращенной под светодиодами разных типов . Китайские исследователи сделали вывод, что целесообразно использовать смесь белого и красного света. Но если посмотреть на цифровые данные из статьи (рис. 12), замечаешь, что разница параметров при разных типах освещения отнюдь не радикальна.


Рис 12. Значения исследуемых факторов в двух фазах роста пшеницы под красными, красно-синими, красно-белыми и белыми светодиодами

Однако основным направлением исследований сегодня является исправление недостатков узкополосного красно-синего освещения добавлением белого света. Например, японские исследователи выявили увеличение массы и питательной ценности салата и томатов при добавлении к красному свету белого. На практике это означает, что, если эстетическая привлекательность растения во время роста неважна, отказываться от уже купленных узкополосных красно-синих светильников необязательно, светильники белого света можно использовать дополнительно.

Влияние качества света на результат

Фундаментальный закон экологии «бочка Либиха» (рис. 13) гласит: развитие ограничивает фактор, сильнее других отклоняющийся от нормы. Например, если в полном объеме обеспечены вода, минеральные вещества и СО 2 , но интенсивность освещения составляет 30 % от оптимального значения - растение даст не более 30 % максимально возможного урожая.


Рис. 13. Иллюстрация принципа ограничивающего фактора из обучающего ролика на YouTube

Реакция растения на свет: интенсивность газообмена, потребления питательных веществ из раствора и процессов синтеза - определяется лабораторным путем. Отклики характеризуют не только фотосинтез, но и процессы роста, цветения, синтеза необходимых для вкуса и аромата веществ.

На рис. 14 показана реакция растения на изменение длины волны освещения. Измерялась интенсивность потребления натрия и фосфора из питательного раствора мятой, земляникой и салатом. Пики на таких графиках - признаки стимулирования конкретной химической реакции. По графикам видно что исключить из полного спектра ради экономии какие-то диапазоны, - все равно что удалить часть клавиш рояля и играть мелодию на оставшихся.


Рис. 14. Стимулирующая роль света для потребления азота и фосфора мятой, земляникой и салатом (данные предоставлены компанией Фитэкс)

Принцип ограничивающего фактора можно распространить на отдельные спектральные составляющие - для полноценного результата в любом случае нужен полный спектр. Изъятие из полного спектра некоторых диапазонов не ведет к значимому росту энергетической эффективности, но может сработать «бочка Либиха» - и результат окажется отрицательным.
Примеры демонстрируют, что обычный белый светодиодный свет и специализированный «красно-синий фитосвет» при освещении растений обладают примерно одинаковой энергетической эффективностью. Но широкополосный белый комплексно удовлетворяет потребности растения, выражающиеся не только в стимуляции фотосинтеза.

Убирать из сплошного спектра зеленый, чтобы свет из белого превратился в фиолетовый, - маркетинговый ход для покупателей, которые хотят «специального решения», но не выступают квалифицированными заказчиками.

Корректировка белого света

Наиболее распространенные белые светодиоды общего назначения имеют невысокую цветопередачу Ra = 80, что обусловлено нехваткой в первую очередь красного цвета (рис. 4).

Недостаток красного в спектре можно восполнить, добавив в светильник красные светодиоды. Такое решение продвигает, например , CREE . Логика «бочки Либиха» подсказывает, что такая добавка не повредит, если это действительно добавка, а не перераспределение энергии из других диапазонов в пользу красного.

Интересную и важную работу проделал в 2013–2016 годах ИМБП РАН : там исследовали, как влияет на развитие китайской капусты добавление к свету белых светодиодов 4000 К / Ra = 70 света узкополосных красных светодиодов 660 нм.

И выяснили следующее:

  • Под светодиодным светом капуста растет примерно так же, как под натриевым, но в ней больше хлорофилла (листья зеленее).
  • Cухая масса урожая почти пропорциональна общему количеству света в молях, полученному растением. Больше света - больше капусты.
  • Концентрация витамина С в капусте незначительно повышается с ростом освещенности, но значимо увеличивается с добавлением к белому свету красного.
  • Значимое увеличение доли красной составляющей в спектре существенно повысило концентрацию нитратов в биомассе. Пришлось оптимизировать питательный раствор и вводить часть азота в аммонийной форме, чтобы не выйти за ПДК по нитратам. А вот на чисто-белом свету можно было работать только с нитратной формой.
  • При этом увеличение доли красного в общем световом потоке почти не влияет на массу урожая. То есть восполнение недостающих спектральных компонент влияет не на количество урожая, а на его качество.
  • Более высокая эффективность в молях на ватт красного светодиода приводит к тому, что добавление красного к белому эффективно еще и энергетически.
Таким образом, добавление красного к белому целесообразно в частном случае китайской капусты и вполне возможно в общем случае. Конечно, при биохимическом контроле и правильном подборе удобрений для конкретной культуры.

Варианты обогащения спектра красным светом

Растение не знает, откуда к нему прилетел квант из спектра белого света, а откуда - «красный» квант. Нет необходимости делать специальный спектр в одном светодиоде. И нет необходимости светить красным и белым светом из одного какого-то специального фитосветильника. Достаточно использовать белый свет общего назначения и отдельным светильником красного света освещать растение дополнительно. А когда рядом с растением находится человек, красный светильник можно по датчику движения выключать, чтобы растение выглядело зеленым и симпатичным.

Но оправданно и обратное решение - подобрав состав люминофора, расширить спектр свечения белого светодиода в сторону длинных волн, сбалансировав его так, чтобы свет остался белым. И получится белый свет экстравысокой цветопередачи, пригодный как для растений, так и для человека.

Открытые вопросы

Можно выявлять роль соотношения дальнего и ближнего красного света и целесообразность использования «синдрома избегания тени» для разных культур. Можно спорить, на какие участки при анализе целесообразно разбивать шкалу длин волн.

Можно обсуждать - нужны ли растению для стимуляции или регуляторной функции длины волн короче 400 нм или длиннее 700 нм. Например, есть частное сообщение, что ультрафиолет значимо влияет на потребительские качества растений. В числе прочего краснолистные сорта салата выращивают без ультрафиолета, и они растут зелеными, но перед продажей облучают ультрафиолетом, они краснеют и отправляются на прилавок. И корректно ли новая метрика PBAR (plant biologically active radiation ), описанная в стандарте ANSI/ASABE S640 , Quantities and Units of Electromagnetic Radiation for Plants (Photosynthetic Organisms , предписывает учитывать диапазон 280–800нм.

Заключение

Сетевые магазины выбирают более лежкие сорта, а затем покупатель голосует рублем за более яркие плоды. И почти никто не выбирает вкус и аромат. Но как только мы станем богаче и начнем требовать большего, наука мгновенно даст нужные сорта и рецепты питательного раствора.

А чтобы растение синтезировало все, что для вкуса и аромата нужно, потребуется освещение со спектром, содержащим все длины волн, на которые растение прореагирует, т. е. в общем случае сплошной спектр. Возможно, базовым решением будет белый свет высокой цветопередачи.

Благодарности
Автор выражает искреннюю благодарность за помощь в подготовке статьи сотруднику ГНЦ РФ-ИМБП РАН к. б. н. Ирине Коноваловой; руководителю проекта «Фитэкс» Татьяне Тришиной; специалисту компании CREE Михаилу Червинскому

Литература

Литература
1. Son K-H, Oh M-M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes // Hortscience. – 2013. – Vol. 48. – P. 988-95.
2. Ptushenko V.V., Avercheva O.V., Bassarskaya E.M., Berkovich Yu A., Erokhin A.N., Smolyanina S.O., Zhigalova T.V., 2015. Possible reasons of a decline in growth of Chinese cabbage under acombined narrowband red and blue light in comparison withillumination by high-pressure sodium lamp. Scientia Horticulturae https://doi.org/10.1016/j.scienta.2015.08.021
3. Sharakshane A., 2017, Whole high-quality light environment for humans and plants. https://doi.org/10.1016/j.lssr.2017.07.001
4. C. Dong, Y. Fu, G. Liu & H. Liu, 2014, Growth, Photosynthetic Characteristics, Antioxidant Capacity and Biomass Yield and Quality of Wheat (Triticum aestivum L.) Exposed to LED Light Sources with Different Spectra Combinations
5. Lin K.H., Huang M.Y., Huang W.D. et al. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata) // Scientia Horticulturae. – 2013. – V. 150. – P. 86–91.
6. Lu, N., Maruo T., Johkan M., et al. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density // Environ. Control. Biol. – 2012. Vol. 50. – P. 63–74.
7. Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., О.С. Яковлева, А.И. Знаменский, И.Г. Тараканов, С.Г. Радченко, С.Н. Лапач. Обоснование оптимальных режимов освещения растений для космической оранжереи «Витацикл-Т». Авиакосмическая и экологическая медицина. 2016. Т. 50. № 4.
8. Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., Яковлева О.С., Знаменский А.И., Тараканов И.Г., Радченко С.Г., Лапач С.Н., Трофимов Ю.В., Цвирко В.И. Оптимизация светодиодной системы освещения витаминной космической оранжереи. Авиакосмическая и экологическая медицина. 2016. Т. 50. № 3.
9. Коновалова И.О., Беркович Ю.А., Смолянина С.О., Помелова М.А., Ерохин А.Н., Яковлева О.С., Тараканов И.Г. Влияние параметров светового режима на накопление нитратов в надземной биомассе капусты китайской (Brassica chinensis L.) при выращивании со светодиодными облучателями. Агрохимия. 2015. № 11.

Теги:

  • свет
  • освещение
  • фитосвет
  • растения
  • растения гика
  • светодиоды
  • качество жизни
Добавить метки

Не стало бы возможным, если б не изобретение технологии получения настоящего белого цвета. Ведь даже самая мощная светодиодная лампа вряд-ли найдёт массовое применение если не будет светить белым цветом. В светодиоде электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Действительно, светодиод мало нагревается, что делает его очень удобным. Светодиод излучает в узкой части спектра, его цвет чист, а вредные дополнительные ультрафиолетовые и инфракрасные составляющие излучения - отсутствуют.

Прочен и надежен, а срок службы может достигать 20 лет. Но и это не предел. Некоторые фирмы начинают внедрять в производство новейшую разработку, позволяюшую довести срок службы LED приборов до 100 лет! Так как же получают белый свет в светодиодах? Есть несколько способов изготовления белого светодиода.

1. Желто-зеленый или зеленый с красным, люминофор наносятся на голубой светодиод, так что излучения смешиваются, образуя близкий к белому свет.
2. На поверхность светодиода, излучающего в ультрафиолетовом диапазоне, наносится три люминофора, излучающих голубой, зеленый и красный свет.
3. Смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы и получается белый свет.


На практике чаще всего используют синий светодиод с желтым люминофором и ультрафиолетовый светодиод с белым люминофором. сделал возможным внедрение такого освещения во все сферы жизнедеятельности и промышленности. Сейчас использование светодиодых ламп в качестве источников света, многократно превосходит осветительные приборы, где используются традиционные источники света благодаря своим неоспоримым преимуществам.


Мощные белые светодиоды выпускаются в корпусах для поверхностного монтажа, позволяющих использовать высокоэффективные технологии производства готовых изделий на печатных платах и стандартных технологических процессов пайки без применения клеев и дополнительных приспособлений. С каждым годом ведущие кампании мира делают всё новые усовершенствования по повышению значений светового потока и световой отдачи, а также надежности светодиодов.

Обсудить статью БЕЛЫЕ СВЕТОДИОДЫ