Процесс испарения воды. Испарение воды растениями. Что такое испарение

Переход из жидкого состояния в газообразное возможен двумя различными процессами: испарением и кипением .

Испарение - это парообразование, происходящее только со свободной поверхности жидкости, граничащей с газообразной средой или с вакуумом .

Испарением называют фазовый процесс перехода вещества из жидкого состояния в газообразное или парообразное, происходящий на поверхности жидкости.

Испарение

ЖИДКОСТЬ ПАР

Экспериментально установлено что при испарении температура тела понижается.

При испарении веществом поглощается теплота. Она затрачивается на преодоление сил сцепления частиц (молекул или атомов) жидкости. Кинетическая энергия молекул, обладающих самой высокой скоростью, превышает их потенциальную энергию взаимодействия с другими молекулами жидкости. Благодаря этому они преодолевают притяжение соседних частиц и вылетают с поверхности жидкости. Средняя энергия оставшихся частиц становится меньше, и жидкость постепенно остывает, если её не подогревать извне.

Если смазать спиртом часть руки, то она будет охлаждаться, потому что, испаряясь, жидкость отнимает часть внутренней энергии руки, вследствие чего ее температура понижается.

А теперь выясним, от каких факторов зависит скорость испарения

Скорость испарения зависит от следующих факторов

:

Температура

Площадь поверхности

Род вещества

Наличие ветра

От влажности воздуха

Важнейший фактор, влияющий на скорость испарения – это температура. Наблюдения за лужами после дождя летом и осенью доказывают, что испарение происходит при любой температуре, так как частицы находятся в движении при любой температуре.

Смочим два одинаковых полотенца водой. Одно полотенце мы развешаем на солнце, а другое разместим в тени. На солнце полотенце высохнет быстрее, так как его нагрели солнечные лучи и испарение произошло быстрее.

Чем выше температура окружающей среды, тем больше скорость движения частиц и их энергия, и тем большее их количество покидает жидкость в единицу времени.

Следующий фактор, влияющий на скорость испарения – это площадь поверхности.

При одинаковом объёме жидкость, находящаяся в широкой тарелке, испарится гораздо быстрее жидкости, налитой в стакан. Это означает, что скорость испарения зависит от площади поверхности испарения. Чем больше эта площадь, тем большее количество молекул вылетает из жидкости в единицу времени.

Интенсивность испарения зависит от рода жидкости: чем меньше притяжение между молекулами жидкости, тем интенсивнее испарениеЕсли налить в одно блюдце растительное масло, а в другое – воду. То вода испарится намного быстрее. Смочив ватку спиртом, мы наблюдаем испарение за несколько минут.

Спирт испаряется с большей скоростью. Так происходит, потому что молекулы спирта слабее взаимодействуют друг с другом, чем молекулы воды.

Влияет на скорость испарения и наличие ветра. Мы знаем, что струя горячего воздуха в фене способна быстро высушить наши волосы. А листья деревьев после дождя высыхают быстрее в ветряную погоду.

Ветер уносит молекулы, вылетевшие из жидкости, и обратно они уже не возвращаются. Их место занимают новые молекулы, покидающие жидкость. Поэтому в самой жидкости их становится меньше. Следовательно, она испаряется быстрее.

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 09.11.2014 21:08 Просмотров: 13245

В жидком состоянии вещество может существовать в определённом интервале температур. При температуре, меньшей нижнего значения этого интервала, жидкость превращается в твёрдое вещество. А если значение температуры превысит верхнюю границу интервала, жидкость переходит в газообразное состояние.

Всё это мы можем наблюдать на примере воды. В жидком состоянии мы видим её в реках, озёрах, морях, океанах, водопроводном кране. Твёрдое состояние воды - лёд. В него она превращается, когда при нормальном атмосферном давлении её температура снижается до 0 о С. А при повышении температуры до 100 о С вода закипает и превращается в пар, который является её газообразным состоянием.

Процесс превращения вещества в пар называют парообразованием. Обратный процесс перехода из пара в жидкость - конденсация .

Парообразование происходит в двух случаях: при испарении и при кипении.

Испарение

Испарением называют фазовый процесс перехода вещества из жидкого состояния в газообразное или парообразное, происходящий на поверхности жидкости .

Как и при плавлении, при испарении веществом поглощается теплота. Она затрачивается на преодоление сил сцепления частиц (молекул или атомов) жидкости. Кинетическая энергия молекул, обладающих самой высокой скоростью, превышает их потенциальную энергию взаимодействия с другими молекулами жидкости. Благодаря этому они преодолевают притяжение соседних частиц и вылетают с поверхности жидкости. Средняя энергия оставшихся частиц становится меньше, и жидкость постепенно остывает, если её не подогревать извне.

Так как частицы находятся в движении при любой температуре, то и испарение также происходит при любой температуре . Мы знаем, что лужи после дождя высыхают даже в холодную погоду.

Но скорость испарения зависит от многих факторов. Один из важнейших - температура вещества . Чем она выше, тем больше скорость движения частиц и их энергия, и тем большее их количество покидает жидкость в единицу времени.

Наполним одинаковым количеством воды 2 стакана. Один поставим на солнцепёк, а другой оставим в тени. Через некоторое время увидим, что воды в первом стакане стало меньше, чем во втором. Её нагрели солнечные лучи, и она испарилась быстрее. Лужи после дождя летом также высыхают гораздо быстрее, чем весной или осенью. В сильную жару происходит быстрое испарение воды с поверхностей водоёмов. Высыхают пруды, озёра, пересыхают русла неглубоких рек. Чем выше температура окружающей среды, тем выше скорость испарения.

При одинаковом объёме жидкость, находящаяся в широкой тарелке, испарится гораздо быстрее жидкости, налитой в стакан. Это означает, что скорость испарения зависит от площади поверхности испарения . Чем больше эта площадь, тем большее количество молекул вылетает из жидкости в единицу времени.

При одинаковых внешних условиях скорость испарения зависит от рода вещества . Заполним стеклянные колбы одинаковым объёмом воды и спирта. Через некоторое время увидим, что спирта осталось меньше, чем воды. Он испаряется с большей скоростью. Так происходит, потому что молекулы спирта слабее взаимодействуют друг с другом, чем молекулы воды.

Влияет на скорость испарения и наличие ветра . Мы знаем, что вещи после стирки гораздо быстрее высыхают, когда их обдувает ветер. Струя горячего воздуха в фене способна быстро высушить наши волосы.

Ветер уносит молекулы, вылетевшие из жидкости, и обратно они уже не возвращаются. Их место занимают новые молекулы, покидающие жидкость. Поэтому в самой жидкости их становится меньше. Следовательно, она испаряется быстрее.

Сублимация

Испарение происходит и в твёрдых телах. Мы видим, как постепенно высыхает на морозе замёрзшее, покрытое льдом бельё. Лёд превращается в пар. Мы ощущаем резкий запах, образующийся при испарении твёрдого вещества нафталина.

Некоторые вещества вообще не имеют жидкой фазы. К примеру, элементарный иод I 2 - простое вещество, представляющее собой кристаллы чёрно-серого цвета с фиолетовым металлическим блеском, при нормальных условиях сразу же превращается в газообразный иод - фиолетовые пары с резким запахом. Тот жидкий йод, который мы покупаем в аптеках, - это не жидкое его состояние, а раствор йода в спирте.

Процесс перехода твёрдых тел в газообразное состояние, минуя жидкую стадию, называют сублимацией, или возгонкой .

Кипение

Кипение - это тоже процесс перехода жидкости в пар. Но парообразование при кипении происходит не только на поверхности жидкости, но и по всему её объёму. Причём процесс этот проходит гораздо интенсивнее, чем при испарении.

Поставим на огонь чайник с водой. Так как в воде всегда есть растворённый в ней воздух, то при нагревании на дне чайника и на его стенках появляются пузырьки. Эти пузырьки содержат воздух и насыщенный водяной пар. Сначала они появляются на стенках чайника. Количество пара в них увеличивается, увеличиваются в размерах и они сами. Затем под воздействием выталкивающей силы Архимеда они будут отрываться от стенок, подниматься вверх и лопаться на поверхности воды. Когда температура воды достигнет 100 о С, пузырьки будут образовываться уже по всему объёму воды.

Испарение происходит при любой температуре, а кипение - только при определённой температуре, которая называется температурой кипения .

Каждое вещество имеет свою температуру кипения. Она зависит от величины давления.

При нормальном атмосферном давлении вода закипает при температуре 100 о С, спирт - при 78 о С, железо - при 2750 о С. А температура кипения кислорода - минус 183 о С.

При уменьшении давления температура кипения снижается. В горах, где атмосферное давление ниже, вода закипает при температуре менее 100 о С. И чем выше над уровнем моря, тем меньшей будет температура кипения. А в кастрюле-скороварке, где создаётся повышенное давление, вода закипает при температуре выше 100 о С.

Насыщенный и ненасыщенный пар

Если вещество может одновременно существовать в жидкой (или твёрдой) фазе и газообразной, то его газообразное состояние называют паром . Пар образуют молекулы, вылетевшие при испарении из жидкости или твёрдого вещества.

Нальём жидкость в сосуд и плотно закроем его крышкой. Через некоторое время количество жидкости уменьшится из-за её испарения. Молекулы, покидающие жидкость, будут концентрироваться над её поверхностью в виде пара. Но когда плотность пара станет довольно высокой, некоторые из них начнут снова возвращаться в жидкость. И таких молекул будет всё больше и больше. Наконец, настанет такой момент, когда число молекул, вылетающих из жидкости, и число молекул, возвращающихся в неё, сравняется. В этом случае говорят, что жидкость находится в динамическом равновесии со своим паром . А такой пар называется насыщенным .

Если при парообразовании из жидкости вылетает больше молекул, чем возвращается, то такой пар будет ненасыщенным . Ненасыщенный пар образуется, когда испаряющаяся жидкость находится в открытом сосуде. Покидающие её молекулы рассеиваются в пространстве. Возвращаются в жидкость далеко не все из них.

Конденсация пара

Обратный переход вещества из газообразного состояния в жидкое называют конденсацией. При конденсации часть молекул пара возвращается в жидкость.

Пар начинает превращаться в жидкость (конденсироваться) при определённом сочетании температуры и давления. Такое сочетание называется критической точкой . Максимальная температура, ниже которой начинается конденсация, называется критической температурой. При температуре выше критической газ никогда не превратится в жидкость.

В критической точке граница раздела фазовых состояний жидкость-пар размывается. Исчезает поверхностное натяжение жидкости, выравниваются плотности жидкости и её насыщенного пара.

При динамическом равновесии, когда число молекул, покидающих жидкость и возвращающихся в неё равно, процессы испарения и конденсации уравновешены.

При испарении воды её молекулы образуют водяной пар , который смешивается с воздухом или другим газом. Температура, при которой такой пар в воздухе становится насыщенным, начинает конденсироваться при охлаждении и превращается в капельки воды, называется точкой росы .

Когда в воздухе находится большое количество водяного пара, говорят, что его влажность повышена.

В природе испарение и конденсацию мы наблюдаем очень часто. Утренний туман, облака, дождь - всё это результат этих явлений. С земной поверхности при нагревании испаряется влага. Молекулы образовавшегося пара поднимаются вверх. Встречая на своём пути прохладные листики или травинки, пар конденсируется на них в виде капелек росы. Чуть выше, в приземных слоях, он становится туманом. А высоко в атмосфере при низкой температуре остывший пар превращается в облака, состоящие из капелек воды или кристалликов льда. Впоследствии из этих облаков на землю прольётся дождь или выпадет град.

Но капельки воды при конденсации образуются лишь в том случае, когда в воздухе находятся мельчайшие твёрдые или жидкие частицы, которые называют ядрами конденсации . Ими могут быть продукты горения, распыления, частицы пыли, морской соли над океаном, частицы, образовавшиеся в результате химических реакций в атмосфере и др.

Десублимация

Иногда вещество может перейти из газообразного состояния сразу в твёрдое, минуя жидкую стадию. Такой процесс называется десублимацией .

Ледяные узоры, которые появляются на стёклах в мороз, и есть пример десублимации. При заморозках почва покрывается инеем - тонкими кристалликами льда, в которые превратились водяные пары из воздуха.

В природе вещества могут быть в одном из трех агрегатных состояний: твердом, жидком и газообразном. Переход из первого во второе и наоборот можно наблюдать ежедневно, особенно зимой. Однако превращение жидкости в пар, которое известно как процесс испарения, часто не видно глазу. При кажущейся незначительности оно играет важную роль в жизни человека. Итак, давайте узнаем об этом подробнее.

Испарение - это что такое

Каждый раз, решив вскипятить чайник для чая или кофе, можно наблюдать, как, достигнув 100 °С, вода превращается в пар. Именно это и является практическим примером процесса парообразования (перехода определенного вещества в газообразное состояние).

Парообразование бывает двух видов: кипение и испарение. На первый взгляд они идентичны, но это распространенное заблуждение.

Испарение - это парообразование с поверхности вещества, а кипение - со всего его объема.

Испарение и кипение: в чем разница

Хотя и процесс испарения, и кипение, оба способствуют переходу жидкости в газообразное состояние, стоит помнить о двух важных отличиях между ними.

  • Кипение - это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100 °С, для рафинированного подсолнечного масла - 227 °С, для нерафинированного - 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура - 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.
  • Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением.

Процесс сублимации

Считается, что испарение - это переход из жидкого в газообразное агрегатное состояние. Однако в редких случаях, минуя жидкое, возможно испарение прямо из твердого состояния в газообразное. Такой процесс называется сублимацией.

Это слово знакомо всем, кто хоть раз заказывал кружку или футболку с любимой фотографией в фотосалоне. Для перманентного нанесения изображения на ткань или керамику как раз и используется этот вид испарения, в честь него печать такого рода называется сублимационной.

Также такое испарение часто используется для промышленной сушки фруктов и овощей, изготовления кофе.

Хотя сублимация встречается намного реже, нежели испарение жидкости, иногда ее можно наблюдать в быту. Так, вывешенное сушиться зимой постиранное влажное белье - мгновенно замерзает и становится твердым. Однако постепенно эта жесткость уходит, и вещи становятся сухими. В данном случае вода из состояния льда, минуя жидкую фазу, переходит сразу в пар.

Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы.

В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние.

Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества - она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого.

  • Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом - вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится.
  • Второе, от чего зависит испарение, - температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются.
  • Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки).
  • И снова о чае. Известен еще одни способ быстрее его остудить - подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) - это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар.
  • Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

Конденсация и десублимация

Превратившись в пар, молекулы не перестают двигаться. В новом агрегатном состоянии они начинают сталкиваться с молекулами воздуха. Из-за этого иногда они могут возвращаться в жидкое (конденсация) или твердое (десублимация) состояние.

Когда процессы испарения и конденсации (десублимации) равносильны между собой, это называют динамическим равновесием. Если газообразное вещество находится в динамическом равновесии со своей жидкостью аналогичного состава, его называют насыщенным паром.

Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека.

Как известно, при температуре тела 42,2 °С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении.

Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения - потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры.

Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них.

Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его.

Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

Как используют испарение в промышленности и в быту

Для химической и пищевой промышленности испарение - это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ).

Также испарение (в особенности сублимация) используется для очистки различных веществ.

Еще одной сферой применения является кондиционирование воздуха.

Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они - невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами.

К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена.

Испарение

Испарение над кружкой чая

Испаре́ние - процесс перехода вещества из жидкого состояния в газообразное, происходящий на поверхности вещества (пар). Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое). Испарение (парообразование), переход вещества из конденсированной (твердой или жидкой) фазы в газообразную (пар); фазовый переход первого рода.

Существует более развёрнутое понятие испарения в высшей физике.

Испаре́ние - это процесс, при котором с поверхности жидкости или твёрдого тела вылетают (отрываются) частицы (молекулы, атомы), при этом E k > E п.

Общая характеристика

Испарение твердого тела называется сублимацией (возгонкой), а парообразование в объёме жидкости - кипением. Обычно под испарением понимают парообразование на свободной поверхности жидкости в результате теплового движения её молекул при температуре ниже точки кипения, соответствующей давлению газовой среды, расположенной над указанной поверхностью. При этом молекулы, обладающие достаточно большой кинетической энергией, вырываются из поверхностного слоя жидкости в газовую среду; часть их отражается обратно и захватывается жидкостью, а остальные безвозвратно ею теряются.

Испарение - эндотермический процесс, при котором поглощается теплота фазового перехода - теплота испарения, затрачиваемая на преодоление сил молекулярного сцепления в жидкой фазе и на работу расширения при превращении жидкости в пар. Удельную теплоту испарения относят к 1 молю жидкости (молярная теплота испарения, Дж/моль) или к единице её массы (массовая теплота испарения, Дж/кг). Скорость испарения определяется поверхностной плотностью потока пара jп, проникающего за единицу времени в газовую фазу с единицы поверхности жидкости [в моль/(с.м 2) или кг/(с.м 2)]. Наибольшее значение jп достигается в вакууме. При наличии над жидкостью относительно плотной газовой среды испарение замедляется вследствие того, что скорость удаления молекул пара от поверхности жидкости в газовую среду становится малой по сравнению со скоростью испускания их жидкостью. При этом у поверхности раздела фаз образуется слой парогазовой смеси, практически насыщенный паром. Парциальное давление и концентрация пара в данном слое выше, чем в основной массе парогазовой смеси.

Процесс испарения зависит от интенсивности теплового движения молекул : чем быстрее движутся молекулы, тем быстрее происходит испарение. Кроме того, немаловажными факторами, влияющими на процесс испарения, являются скорость внешней (по отношению к веществу) диффузии , а также свойства самого вещества. Проще говоря, при ветре испарение происходит гораздо быстрее. Что же касается свойств вещества, то, к примеру, спирт испаряется гораздо быстрее воды. Важным фактором является также площадь поверхности жидкости, с которой происходит испарение: из узкого графина оно будет происходить медленнее, чем из широкой тарелки.

Молекулярный уровень

Рассмотрим данный процесс на молекулярном уровне: молекулы, обладающие достаточной энергией (скоростью) для преодоления притяжения соседних молекул, вырываются за границы вещества (жидкости). При этом жидкость теряет часть своей энергии (остывает). Например, очень горячая жидкость: мы дуем на её поверхность, чтобы остудить, при этом, мы ускоряем процесс испарения.

Термодинамическое равновесие

Нарушение термодинамического равновесия между жидкостью и паром, содержащимся в парогазовой смеси, объясняется скачком температуры на границе раздела фаз. Однако обычно этим скачком можно пренебречь и принимать, что парциальное давление и концентрация пара у поверхности раздела фаз соответствуют их значениям для насыщенного пара, имеющего температуру поверхности жидкости. Если жидкость и парогазовая смесь неподвижны и влияние свободной конвекции в них незначительно, удаление образовавшегося при испарении пара от поверхности жидкости в газовую среду происходит в основном в результате молекулярной диффузии и появления вызываемого последней при полупроницаемой (непроницаемой для газа) поверхности раздела фаз массового (так называемого стефановского) потока парогазовой смеси, направленного от поверхности жидкости в газовую среду (см. Диффузия). Распределение температур при различных режимах испарительного охлаждения жидкости. Потоки теплоты направлены: а - от жидкой фазы к поверхности испарения в газовую фазу; б - от жидкой фазы только к поверхности испарения; в - к поверхности испарения со стороны обеих фаз; г - к поверхности испарения только со стороны газовой фазы.

Баро-, термодиффузии

Эффекты баро- и термодиффузии при инженерных расчетах обычно не учитываются, но влияние термодиффузии может быть существенным при высокой неоднородности парогазовой смеси (при большом различии молярных масс её компонентов) и значительных градиентах температур. При движении одной или обеих фаз относительно поверхности их раздела возрастает роль конвективного переноса вещества и энергии парогазовой смеси и жидкости.

При отсутствии подвода энергии к системе жидкость-газ от внеш. источников теплота Испарение может подводиться к поверхностному слою жидкости со стороны одной или обеих фаз. В отличие от результирующего потока вещества, всегда направленного при испарении от жидкости в газовую среду, потоки теплоты могут иметь разные направления в зависимости от соотношений температур основной массы жидкости tж, границы раздела фаз tгр и газовой среды tг. При контакте определенного кол-ва жидкости с полубесконечным объёмом или омывающим её поверхность потоком газовой среды и при температуре жидкости, более высокой, чем температура газа (tж > tгр > tг), возникает поток теплоты со стороны жидкости к поверхности раздела фаз: (Qжг = Qж - Qи, где Qи -теплота испарения, Qжг - количество теплоты, передаваемой от жидкости газовой среде. При этом жидкость охлаждается (так называемое испарительное охлаждение). Если в результате такого охлаждения достигается равенство tгр = tг, теплоотдача от жидкости к газу прекращается (Qжг = 0) и вся теплота, подводимая со стороны жидкости к поверхности раздела, затрачивается на Испарение (Qж = Qи).

В случае газовой среды, не насыщенной паром, парциальное давление последнего у поверхности раздела фаз и при Qж = Qи остается более высоким, чем в основной массе газа, вследствие чего испарение и испарительное охлаждение жидкости не прекращаются и tгр становится ниже tж и tг. При этом теплота подводится к поверхности раздела от обеих фаз до тех пор, пока в результате понижения tж достигается равенство tгр = tж и поток теплоты со стороны жидкости прекращается, а со стороны газовой среды Qгж становится равным Qи. Дальнейшее испарение жидкости происходит при постоянной температуре tм = tж = tгр, которую называют пределом охлаждения жидкости при испарительном охлаждении или температурой мокрого термометра (так как её показывает мокрый термометр психрометра). Значение tм зависит от параметров парогазовой среды и условий тепло- и массообмена между жидкой и газовой фазами.

Если жидкость и газовая среда, имеющие различные температуры, находятся в ограниченном объёме, не получающем энергию извне и не отдающем её наружу, Испарение происходит до тех пор, пока между двумя фазами не наступает термодинамическое равновесие, при котором температуры обеих фаз уравниваются при неизменной энтальпии системы, и газовая фаза насыщается паром при температуре системы tад. Последняя, называется температурой адиабатического насыщения газа, определяется только начальными параметрами обеих фаз и не зависит от условий тепло- и массообмена.

Скорость испарения

Скорость изотермического испарения [кг/(м 2 с)] при однонаправленной диффузии пара в расположенный над поверхностью жидкости неподвижный слой бинарной парогазовой смеси толщиной d, [м] может быть найдена по формуле Стефана: , где D - коэффициент взаимной диффузии, [м 2 /с]; - газовая постоянная пара, [Дж/(кг К)] или [м 2 /(с 2 K)]; T - температура смеси, [К]; р - давление парогазовой смеси, [Па]; - парциальные давления пара у поверхности раздела и на наружной границе слоя смеси, [Па].

В общем случае (движущиеся жидкость и газ, неизотермической условия) в прилегающем к поверхности раздела фаз пограничном слое жидкости переносу импульса сопутствует перенос теплоты, а в пограничном слое газа (парогазовой смеси) происходят взаимосвязанные тепло- и массоперенос. При этом для расчета скорости Испарение используют экспериментальные коэффициенты тепло- и массоотдачи, а в относительно более простых случаях - приближенные методы численных решений системы дифференциальных уравнений для сопряженных пограничных слоев газовой и жидкой фаз.

Интенсивность массообмена при испарении зависит от разности химических потенциалов пара у поверхности раздела и в основной массе парогазовой смеси. Однако если баро- и термодиффузией можно пренебречь, разность химических потенциалов заменяют разностью парциальных давлений или концентраций паров и принимают: jп = bp (рп, гр - рп, осн) = bpр(уп, гр - уп, осн) или jп = bc(cп, гр - сп, осн), где bp, bc - коэффициент массоотдачи, p - давление смеси, рп - парциальное давление пара, yп = pп/p - молярная концентрация паров, cп = rп/r - массовая концентрация паров, rп, r - локальные плотности паров и смеси; индексы означают: «гр» - у границы раздела фаз, «осн» - в осн. массе смеси. Плотность потока теплоты, отдаваемой при Испарение жидкостью, составляет [в Дж/(м2 с)]: q = aж(tж - tгр) = rjп + aг (tгр - tг), где aж, aг - коэффициент теплоотдачи со стороны жидкости и газа, [Вт/(м 2 К)]; r - теплота Испарение, [Дж/кг].

При очень малых радиусах кривизны поверхности испарения (например, при испарении мелких капель жидкости) учитывается влияние поверхностного натяжения жидкости, приводящего к тому, что равновесное давление пара над поверхностью раздела выше давления насыщенных паров той же жидкости над плоской поверхностью. Если tгр ~ tж, то при расчете испарения могут приниматься во внимание только тепло- и массообмен в газовой фазе. При относительно малой интенсивности массообмена приближенно справедлива аналогия между процессами тепло- и массопереноса, из которой следует: Nu/Nu0 = Sh*/Sh0, где Nu = aг l/lг - число Нуссельта, l - характерный размер поверхности испарения, lг - коэффициент теплопроводности парогазовой смеси, Sh* = bpyг, грl/Dp = bccг, грl/D - число Шервуда для диффузионной составляющей потока пара, Dp = D/RпT -коэффициент диффузии, отнесенный к градиенту парциального давления пара. Значения bp и bс вычисляют по приведенным выше соотношениям, числа Nu0 и Sh0 соответствуют jп: 0 и могут определяться по данным для раздельно происходящих процессов тепло- и массообмена. Число Sh0 для суммарного (диффузионного и конвективного) потока пара находят делением Sh* на молярную (yг, гр) или массовую (сг, гр) концентрацию газа у поверхности раздела в зависимости от того, к какой движущей силе массообмена отнесен коэффициент b.

Уравнения

Уравнения подобия для Nu и Sh* при испарении включают кроме обычных критериев (чисел Рейнольдса Re, Архимеда Аr, Прандтля Рr или Шмидта Sc и геом. параметров) параметры, учитывающие влияние поперечного потока пара и степени неоднородности парогазовой смеси (отношения молярных масс или газовых постоянных её компонентов) на профили, скорости, температуры или концентраций в сечении пограничного слоя.

При малых jп, не нарушающих существенно гидродинамический режим движения парогазовой смеси (например, при испарении воды в атмосферный воздух) и подобие граничных условий полей температур и концентраций, влияние дополнительных аргументов в уравнениях подобия незначительно и им можно пренебречь, принимая, что Nu = Sh. При испарении многокомпонентных смесей указанные закономерности сильно усложняются. При этом теплоты испарения компонентов смеси и составы жидкой и парогазовой фаз, находящихся между собой в равновесии, различны и зависят от температуры. При испарении бинарной жидкой смеси образующаяся смесь паров в относительно богаче более летучим компонентом, исключая только азеотропные смеси, испаряющиеся в точках экстремума (максимума или минимума) кривых состояния как чистая жидкость.

Конструкции аппаратов

Общее количество испаряющейся жидкости увеличивается с возрастанием поверхности контакта жидкой и газовой фаз, поэтому конструкции аппаратов, в которых происходит испарение, предусматривают увеличение поверхности испарения путем создания большого зеркала жидкости, раздробления её на струи и капли или образования тонких пленок, стекающих по поверхности насадок. Возрастание интенсивности тепло- и массообмена при испарении достигается также повышением скорости газовой среды относительно поверхности жидкости. Однако увеличение этой скорости не должно приводить к чрезмерному уносу жидкости газовой средой и значительному повышению гидравлического сопротивления аппарата.

Применение

Испарение широко применяется в промышленной практике для очистки веществ, сушки материалов, разделения жидких смесей, кондиционирования воздуха. Испарительное охлаждение воды используется в оборотных системах водоснабжения предприятий.

См. также

Литература

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Берман Л. Д., Испарительное охлаждение циркуляционной воды, 2 изд., М.-Л., 1957;
  • Фукс Н. А., Испарение и рост капель в газообразной среде, М., 1958;
  • Берд Р., Стьюарт В., Лайтфут Е., Явления переноса, пер. с англ., М., 1974;
  • Берман Л. Д., «Теоретические основы хим. технологии», 1974, т.8, № 6, с. 811-22;
  • Шервуд Т., Пигфорд Р., Уилки Ч., Массопередача, пер. с англ., М., 1982. Л. Д. Берман.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Испарение" в других словарях:

    Переход в ва из жидкого или твёрдого агрегатного состояния в газообразное (пар). Обычно под И. понимают переход жидкости в пар, происходящий на свободной поверхности жидкости. И. твёрдых тел наз. возгонкой или сублимацией. Зависимость давления… … Физическая энциклопедия

    Парообразование, происходящее на свободной поверхности жидкости. Испарение с поверхности твердого тела называется сублимацией … Большой Энциклопедический словарь

Вода – одно из самых распространенных и вместе с тем самое удивительное вещество на Земле. Вода находится повсюду: и вокруг нас, и внутри нас. Мировой океан, состоящий из воды, покрывает ¾ поверхности земного шара. Любой живой организм, будь то растение, животное или человек, содержит воду. Человек более чем на 70% состоит из воды. Именно вода – одна из главнейших причин возникновения жизни на Земле. Как и любое вещество, вода может находиться в различных состояниях или, как говорят физики, ‑ агрегатных состояниях вещества: твердом, жидком и газообразном. При этом постоянно происходят переходы из одного состояния в другое – так называемые фазовые переходы. Одним из таких переходов является испарение, обратный процесс называется конденсацией. Давайте попробуем разобраться, как можно использовать это физическое явление, и что нужно знать об этом.

В процессе испарения вода переходит из жидкого состояния в газообразное, при этом образуется водяной пар. Это происходит при любой температуре, когда вода находится в жидком состоянии (0 0 – 100 0 С) . Однако скорость испарения не всегда одинаковая и зависит от ряда факторов: от температуры воды, от площади поверхности воды, от влажности воздуха и от наличия ветра. Чем выше температура воды, тем быстрее двигаются ее молекулы и тем интенсивнее происходит испарение. Чем больше площадь поверхности воды, а испарение происходит исключительно на поверхности, тем больше молекул воды смогут перейти из жидкого состояния в газообразное, что увеличит скорость испарения. Чем больше содержание водяных паров в воздухе, то есть чем выше влажность воздуха, тем менее интенсивно происходит испарение. Кроме того, чем больше скорость удаления молекул водяного пара от поверхности воды, то есть чем больше скорость ветра, тем больше скорость испарения воды. Также следует отметить, что в процессе испарения воду покидают самые быстрые молекулы, поэтому средняя скорость молекул, а, значит, и температура воды уменьшаются.

Учитывая описанные закономерности, важно обратить внимание на следующее. Очень горячий чай пить не безвредно. Однако чтобы его заварить, требуется вода с температурой, близкой к температуре кипения (100 0 С) . При этом вода активно испаряется: над чашкой с чаем хорошо видны поднимающиеся струйки водяного пара. Чтобы быстро охладить чай и сделать чаепитие комфортным, нужно увеличить скорость испарения, и охлаждение чая произойдет существенно быстрее. Первый способ известен всем с детства: если подуть на чай и тем самым удалить молекулы водяного пара и нагретый воздух от поверхности, то скорость испарения и теплопередачи увеличится, и чай быстрее остынет. Второй способ часто использовали в старину: переливали чай из чашки в блюдце и тем самым увеличивали площадь поверхности в несколько раз, пропорционально увеличивая скорость испарения и теплопередачи, благодаря чему чай быстро остывал до комфортной температуры.

Охлаждение воды при испарении хорошо ощущается, когда летом выходишь из открытого водоема после купания. С влажной кожей находиться прохладнее. Поэтому чтобы не переохладиться и не заболеть, нужно обтереться полотенцем, тем самым остановить охлаждение, вызванное испарением воды. Однако это свойство воды – охлаждаться при испарении – иногда полезно использовать для того, чтобы немного понизить высокую температуру заболевшему человеку и тем самым облегчить его самочувствие при помощи компрессов или обтираний.

При конденсации вода из газообразного состояния переходит в жидкое с выделением тепловой энергии. Это важно помнить, находясь вблизи кипящего чайника. Струя водяного пара, выходящая из его носика, имеет высокую температуру (около 100 0 С) . Кроме того, соприкасаясь с кожей человека, водяной пар конденсируется, тем самым увеличивая неблагоприятное термическое воздействие, что может привести к болезненным ожогам.

Также полезно знать, что в воздухе всегда содержится какое-то количество водяных паров. И чем выше температура воздуха, тем больше водяных паров может быть в атмосфере. Поэтому летом при заметном понижении температуры в ночное время часть водяных паров конденсируется и выпадает в виде росы. Если утром пройти босиком по траве, то она будет влажной и холодной на ощупь, так как уже активно испаряется благодаря утреннему солнцу. Похожая ситуация происходит, если зимой войти с улицы в теплое помещение в очках, ‑ очки будут запотевать, так как водяные пары, находящиеся в воздухе, будут конденсироваться на холодной поверхности стекол. Чтобы это предотвратить, можно воспользоваться обычным мылом и нанести на стеклах сетку с шагом около 1 см, а затем растереть мыло мягкой тканью, не спеша и не сильно нажимая. Стекла очков покроются тонкой невидимой пленкой и не будут запотевать.

Водяной пар, находящийся в воздухе, можно с большой точностью считать идеальным газом и рассчитывать параметры его состояния при помощи уравнения Менделеева-Клапейрона. Предположим, что температура воздуха днем при нормальном атмосферном давлении составляет 30 0 С , а влажность воздуха 50% . Найдем, до какой температуры должен охладиться воздух ночью, чтобы выпала роса. При этом будем считать, что содержание (плотность) водяных паров в воздухе не изменялось.

Плотность насыщенного водяного пара при 30 0 С равна 30,4 г/м 3 (табличное значение). Так как влажность воздуха 50%, то плотность водяных паров составляет 0,5·30,4 г/м 3 = 15,2 г/м 3 . Роса выпадет, если при некоторой температуре эта плотность будет равна плотности насыщенного водяного пара. Согласно табличным данным это наступит при температуре примерно 18 0 С . То есть, если ночью температура воздуха опустится ниже 18 0 С , то выпадет роса.

По предложенному методу мы предлагаем вам решить задачу:

В закрытой банке объемом 2 л находится воздух, влажность которого составляет 80% , а температура 25 0 С. Банку поставили в холодильник, внутри которого температура 6 0 С . Какая масса воды выпадет в виде росы после наступления теплового равновесия.