Высота пирамиды. Как ее найти? Объём правильной пирамиды Площадь и объем треугольной пирамиды


Определение. Боковая грань - это треугольник, у которого один угол лежит в вершине пирамиды, а противоположная ему сторона совпадает со стороной основания (многоугольника).

Определение. Боковые ребра - это общие стороны боковых граней. У пирамиды столько ребер сколько углов у многоугольника.

Определение. Высота пирамиды - это перпендикуляр, опущенный из вершины на основание пирамиды.

Определение. Апофема - это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания.

Определение. Диагональное сечение - это сечение пирамиды плоскостью, проходящей через вершину пирамиды и диагональ основания.

Определение. Правильная пирамида - это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания.


Объём и площадь поверхности пирамиды

Формула. Объём пирамиды через площадь основы и высоту:


Свойства пирамиды

Если все боковые ребра равны, то вокруг основания пирамиды можно описать окружность, а центр основания совпадает с центром окружности. Также перпендикуляр, опущенный из вершины, проходит через центр основания (круга).

Если все боковые ребра равны, то они наклонены к плоскости основания под одинаковыми углами.

Боковые ребра равны тогда, когда они образуют с плоскостью основания равные углы или если вокруг основания пирамиды можно описать окружность.

Если боковые грани наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проектируется в ее центр.

Если боковые грани наклонены к плоскости основания под одним углом, то апофемы боковых граней равны.


Свойства правильной пирамиды

1. Вершина пирамиды равноудалена от всех углов основания.

2. Все боковые ребра равны.

3. Все боковые ребра наклонены под одинаковыми углами к основанию.

4. Апофемы всех боковых граней равны.

5. Площади всех боковых граней равны.

6. Все грани имеют одинаковые двугранные (плоские) углы.

7. Вокруг пирамиды можно описать сферу. Центром описанной сферы будет точка пересечения перпендикуляров, которые проходят через середину ребер.

8. В пирамиду можно вписать сферу. Центром вписанной сферы будет точка пересечения биссектрис, исходящие из угла между ребром и основанием.

9. Если центр вписанной сферы совпадает с центром описанной сферы, то сумма плоских углов при вершине равна π или наоборот, один угол равен π/n , где n - это количество углов в основании пирамиды.


Связь пирамиды со сферой

Вокруг пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многогранник вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы будет точка пересечения плоскостей, проходящих перпендикулярно через середины боковых ребер пирамиды.

Вокруг любой треугольной или правильной пирамиды всегда можно описать сферу.

В пирамиду можно вписать сферу, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.


Связь пирамиды с конусом

Конус называется вписанным в пирамиду, если их вершины совпадают, а основание конуса вписано в основание пирамиды.

Конус можно вписать в пирамиду, если апофемы пирамиды равны между собой.

Конус называется описанным вокруг пирамиды, если их вершины совпадают, а основание конуса описана вокруг основания пирамиды.

Конус можно описать вокруг пирамиды если, все боковые ребра пирамиды равны между собой.


Связь пирамиды с цилиндром

Пирамида называется вписанной в цилиндр, если вершина пирамиды лежит на одной основе цилиндра, а основание пирамиды вписано в другую основу цилиндра.

Цилиндр можно описать вокруг пирамиды если вокруг основания пирамиды можно описать окружность.


Определение. Усеченная пирамида (пирамидальная призма) - это многогранник, который находится между основанием пирамиды и плоскостью сечения, параллельной основанию. Таким образом пирамида имеет большую основу и меньшую основу, которая подобна большей. Боковые грани представляют собой трапеции.

Определение. Треугольная пирамида (четырехгранник) - это пирамида в которой три грани и основание являются произвольными треугольниками.

В четырехгранник четыре грани и четыре вершины и шесть ребер, где любые два ребра не имеют общих вершин но не соприкасаются.

Каждая вершина состоит из трех граней и ребер, которые образуют трехгранный угол .

Отрезок, соединяющий вершину четырехгранника с центром противоположной грани называется медианой четырехгранника (GM).

Бимедианой называется отрезок, соединяющий середины противоположных ребер, которые не соприкасаются (KL).

Все бимедианы и медианы четырехгранника пересекаются в одной точке (S). При этом бимедианы делятся пополам, а медианы в отношении 3:1 начиная с вершины.

Определение. Наклонная пирамида - это пирамида в которой одно из ребер образует тупой угол (β) с основанием.

Определение. Прямоугольная пирамида - это пирамида в которой одна из боковых граней перпендикулярна к основанию.

Определение. Остроугольная пирамида - это пирамида в которой апофема больше половины длины стороны основания.

Определение. Тупоугольная пирамида - это пирамида в которой апофема меньше половины длины стороны основания.

Определение. Правильный тетраэдр - четырехгранник у которого все четыре грани - равносторонние треугольники. Он является одним из пяти правильных многоугольников. В правильного тетраэдра все двугранные углы (между гранями) и трехгранные углы (при вершине) равны.

Определение. Прямоугольный тетраэдр называется четырехгранник у которого прямой угол между тремя ребрами при вершине (ребра перпендикулярны). Три грани образуют прямоугольный трехгранный угол и грани являются прямоугольными треугольниками, а основа произвольным треугольником. Апофема любой грани равна половине стороны основы, на которую падает апофема.

Определение. Равногранный тетраэдр называется четырехгранник у которого боковые грани равны между собой, а основание - правильный треугольник. У такого тетраэдра грани это равнобедренные треугольники.

Определение. Ортоцентричный тетраэдр называется четырехгранник у которого все высоты (перпендикуляры), что опущены с вершины до противоположной грани, пересекаются в одной точке.

Определение. Звездная пирамида называется многогранник у которого основой является звезда.

Определение. Бипирамида - многогранник, состоящий из двух различных пирамид (также могут быть срезаны пирамиды), имеющих общую основу, а вершины лежат по разные стороны от плоскости основания.

Пирамидой называют многогранник, основанием которого является произвольный многоугольник, а все грани представляют собой треугольники с общей вершиной, являющейся вершиной пирамиды.

Пирамида – это объемная фигура. Именно поэтому довольно часто требуется найти не только ее площадь, но и объем. Формула объема пирамиды очень проста:

где S – площадь основания, а h – высота пирамиды.

Высотой пирамиды называется прямая, опущенная из ее вершины к основанию под прямым углом. Соответственно, чтобы найти объем пирамиды, необходимо определить какой многоугольник лежит в основании, рассчитать его площадь, узнать высоту пирамиды и найти ее объем. Рассмотрим пример расчета объема пирамиды.

Задача: дана правильная четырехугольная пирамида.

Стороны основания a = 3 см, все боковые ребра b = 4 см. Найдите объем пирамиды.
Для начала вспомним, что для расчета объема потребуется высота пирамиды. Мы можем найти ее по теореме Пифагора. Для этого нам потребуется длина диагонали, а точнее – ее половина. Тогда зная две из сторон прямоугольного треугольника, мы сможем найти высоту. Для начала находим диагональ:

Подставим значения в формулу:


Высоту h мы найдем с помощью d и ребра b :


Теперь найдем

Главной характеристикой любой геометрической фигуры в пространстве является ее объем. В данной статье рассмотрим, что собой представляет пирамида с треугольником в основании, а также покажем, как находить объем треугольной пирамиды - правильной полной и усеченной.

Что это - треугольная пирамида?

Каждый слышал о древних египетских пирамидах, тем не менее они являются четырехугольными правильными, а не треугольными. Объясним, как получить треугольную пирамиду.

Возьмем произвольный треугольник и соединим все его вершины с некоторой одной точкой, расположенной вне плоскости этого треугольника. Образованная фигура будет называться треугольной пирамидой. Она показана на рисунке ниже.

Как видно, рассматриваемая фигура образована четырьмя треугольниками, которые в общем случае являются разными. Каждый треугольник - это стороны пирамиды или ее грань. Эту пирамиду часто называют тетраэдром, то есть четырехгранной объемной фигурой.

Помимо сторон, пирамида также обладает ребрами (их у нее 6) и вершинами (их 4).

с треугольным основанием

Фигура, которая получена с использованием произвольного треугольника и точки в пространстве, будет неправильной наклонной пирамидой в общем случае. Теперь представим, что исходный треугольник имеет одинаковые стороны, а точка пространства расположена точно над его геометрическим центром на расстоянии h от плоскости треугольника. Построенная с использованием этих исходных данных пирамида будет правильной.

Очевидно, что число ребер, сторон и вершин у правильной треугольной пирамиды будет таким же, как у пирамиды, построенной из произвольного треугольника.

Однако правильная фигура обладает некоторыми отличительными чертами:

  • ее высота, проведенная из вершины, точно пересечет основание в геометрическом центре (точка пересечения медиан);
  • боковая поверхность такой пирамиды образована тремя одинаковыми треугольниками, которые являются равнобедренными или равносторонними.

Правильная треугольная пирамида является не только чисто теоретическим геометрическим объектом. Некоторые структуры в природе имеют ее форму, например кристаллическая решетка алмаза, где атом углерода соединен с четырьмя такими же атомами ковалентными связями, или молекула метана, где вершины пирамиды образованы атомами водорода.

треугольной пирамиды

Определить объем совершенно любой пирамиды с произвольным n-угольником в основании можно с помощью следующего выражения:

Здесь символ S o обозначает площадь основания, h - это высота фигуры, проведенная к отмеченному основанию из вершины пирамиды.

Поскольку площадь произвольного треугольника равна половине произведения длины его стороны a на апофему h a , опущенную на эту сторону, то формула объема треугольной пирамиды может быть записана в следующем виде:

V = 1/6 × a × h a × h

Для общего типа определение высоты является непростой задачей. Для ее решения проще всего воспользоваться формулой расстояния между точкой (вершиной) и плоскостью (треугольным основанием), представленной уравнением общего вида.

Для правильной имеет конкретный вид. Площадь основания (равностороннего треугольника) для нее равна:

Подставляем ее в общее выражение для V, получаем:

V = √3/12 × a 2 × h

Частным случаем является ситуация, когда у тетраэдра все стороны оказываются одинаковыми равносторонними треугольниками. В этом случае определить его объем можно, только исходя из знания параметра его ребра a. Соответствующее выражение имеет вид:

Усеченная пирамида

Если верхнюю часть, содержащую вершину, отсечь у правильной треугольной пирамиды, то получится усеченная фигура. В отличие от исходной она будет состоять из двух равносторонних треугольных оснований и трех равнобедренных трапеций.

Ниже на фото показано, как выглядит правильная усеченная пирамида треугольная, изготовленная из бумаги.

Для определения объема треугольной пирамиды усеченной необходимо знать три ее линейных характеристики: каждую из сторон оснований и высоту фигуры, равную расстоянию между верхним и нижним основаниями. Соответствующая формула для объема записывается так:

V = √3/12 × h × (A 2 + a 2 + A × a)

Здесь h - высота фигуры, A и a - длины сторон большого (нижнего) и малого (верхнего) равносторонних треугольников соответственно.

Решение задачи

Чтобы приведенная информация в статье была понятнее для читателя, покажем на наглядном примере, как пользоваться некоторыми из записанных формул.

Пусть объем треугольной пирамиды равен 15 см 3 . Известно, что фигура является правильной. Следует найти апофему a b бокового ребра, если известно, что высота пирамиды составляет 4 см.

Поскольку известны объем и высота фигуры, то можно воспользоваться соответствующей формулой для вычисления длины стороны ее основания. Имеем:

V = √3/12 × a 2 × h =>

a = 12 × V / (√3 × h) = 12 × 15 / (√3 × 4) = 25,98 см

a b = √(h 2 + a 2 / 12) = √(16 + 25,98 2 / 12) = 8,5 см

Рассчитанная длина апофемы фигуры получилась больше ее высоты, что справедливо для пирамиды любого типа.

Пирамида - это многогранник, в основании которого лежит многоугольник. Все грани в свою очередь образуют треугольники, которые сходятся в одной вершине. Пирамиды бывают треугольными, четырехугольными и так далее. Для того чтобы определить, какая пирамида перед вами, достаточно посчитать количество углов в ее основании. Определение "высота пирамиды" очень часто встречается в задачах по геометрии в школьной программе. В статье попробуем рассмотреть разные способы ее нахождения.

Части пирамиды

Каждая пирамида состоит из следующих элементов:

  • боковые грани, которые имеют по три угла и сходятся в вершине;
  • апофема представляет собой высоту, которая опускается из ее вершины;
  • вершина пирамиды - это точка, которая соединяет боковые ребра, но при этом не лежит в плоскости основания;
  • основание - это многоугольник, на котором не лежит вершина;
  • высота пирамиды представляет собой отрезок, который пересекает вершину пирамиды и образует с ее основанием прямой угол.

Как найти высоту пирамиды, если известен ее объем

Через формулу V = (S*h)/3 (в формуле V - объем, S - площадь основания, h - высота пирамиды) находим, что h = (3*V)/S. Для закрепления материала давайте сразу же решим задачу. В треугольной основания равна 50 см 2 , тогда как ее объем составляет 125 см 3 . Неизвестна высота треугольной пирамиды, которую нам и необходимо найти. Здесь все просто: вставляем данные в нашу формулу. Получаем h = (3*125)/50 = 7,5 см.

Как найти высоту пирамиды, если известна длина диагонали и ее ребра

Как мы помним, высота пирамиды образует с ее основанием прямой угол. А это значит что высота, ребро и половина диагонали вместе образуют Многие, конечно же, помнят теорему Пифагора. Зная два измерения, третью величину найти будет несложно. Вспомним известную теорему a² = b² + c², где а - гипотенуза, а в нашем случае ребро пирамиды; b - первый катет или половина диагонали и с - соответственно, второй катет, или высота пирамиды. Из этой формулы c² = a² - b².

Теперь задачка: в правильной пирамиде диагональ равна 20 см, когда как длина ребра - 30 см. Необходимо найти высоту. Решаем: c² = 30² - 20² = 900-400 = 500. Отсюда с = √ 500 = около 22,4.

Как найти высоту усеченной пирамиды

Она представляет собой многоугольник, который имеет сечение параллельно ее основанию. Высота усеченной пирамиды - это отрезок, который соединяет два ее основания. Высоту можно найти у правильной пирамиды, если будут известны длины диагоналей обоих оснований, а также ребро пирамиды. Пусть диагональ большего основания равна d1, в то время как диагональ меньшего основания - d2, а ребро имеет длину - l. Чтобы найти высоту, можно с двух верхних противоположных точек диаграммы опустить высоты на ее основание. Мы видим, что у нас получились два прямоугольных треугольника, остается найти длины их катетов. Для этого из большей диагонали вычитаем меньшую и делим на 2. Так мы найдем один катет: а = (d1-d2)/2. После чего по теореме Пифагора нам остается лишь найти второй катет, который и является высотой пирамиды.

Теперь рассмотрим все это дело на практике. Перед нами задача. Усеченная пирамида имеет в основании квадрат, длина диагонали большего основания равняется 10 см, в то время как меньшего - 6 см, а ребро равняется 4 см. Требуется найти высоту. Для начала находим один катет: а = (10-6)/2 = 2 см. Один катет равен 2 см, а гипотенуза - 4 см. Получается, что второй катет или высота будет равна 16-4 = 12, то есть h = √12 = около 3,5 см.