Классификация минералов по происхождению. Что такое минерал? Классификация Типы соединений минералов

План.

Вариант №6.

1. Классификация минералов и условия их образования: главнейшие породообразующие минералы экзогенного и эндогенного происхождения.

2. Ледники, их геологическая роль, распределение. Породы, образование в результате работы ледников эпохи оледенения.

3. Инженерно-геологические исследования для промышленного и гражданского строительства.

4. Лабораторные методы определения деформационных и прочностных свойств грунтов.

5. Структура, текстура, вещественный состав химических и биохимических осадочных пород.

6. Приток напорных вод в совершенный колодец.

Введение.

Геология – комплекс наук о составе, строении. Истории развития Земли, движениях земной коры и размещении в недрах Земли полезных ископаемых. Основным объектом изучения, исходя из практических задач человека, является земная кора.

В последние десятилетия особое развитие получила инженерная геология – наука, изучающая свойства горных пород (грунтов), природные геологические и техногенно-геологические (инженерно-геологические) процессы в верхних горизонтах земной коры в связи со строительной деятельностью человека.

Главная цель инженерной геологии – изучение природной геологической обстановки местности до начала строительства, а также прогноз тех изменений, которые произойдут в геологической среде, и в первую очередь в породах, в процессе строительства и при эксплуатации сооружений. В современных условиях ни одно здание или сооружение не может быть спроектировано, построено и надежно эксплуатироваться без достоверных и полных инженерно-геологических материалов.

1. Классификация минералов и условия их образования: главнейшие породообразующие минералы экзогенного и эндогенного происхождения.

Минерал – природное тело с определенным химическим составом и кристаллической структурой, образующееся в результате природных физико-химических процессов и являющееся составной частью земной коры, горных пород, руд, метеоритов. Изучением минералов занимается наука минералогия.

В земной коре содержится более 7000 минералов и их разновидностей. Большинство из них встречаются редко и лишь немногим более 100 минералов встречаются часто и в достаточно больших количествах, входят в состав тех или иных горных пород. Такие минералы называют породообразующими.

Происхождение минералов. Условия, в которых образуются минералы в природе, отличаются большим разнообразием и сложностью. Различают три основных процесса минералообразования: эндогенный, экзогенный и метаморфический.

Эндогенный процесс связан с внутренними силами Земли и проявляется в ее недрах. Минералы формируются из магмы – силикатного огненно-жидкого расплава. Таким путем образуются, например, кварц и различные силикаты. Эндогенные минералы обычно плотные,с большой твердостью, стойкие к воде, кислотам, щелочам.

Экзогенный процесс свойственен поверхности земной коры. При этом процессе минералы формируются на суше и в море. В первом случае их создание связано с процессом выветривания, т.е. разрушительным воздействием воды, кислорода, колебаний температуры на эндогенные минералы. Таким образом образуются глинистые минералы (гидрослюда, каолинит и др.), различные железистые соединения (сульфиды, оксиды химический осадков из водных растворов (галит, сильвин и др.). в экзогенном процессе ряд минералов образуется также за счет жизнедеятельности различных организмов (опал и др.).

Экзогенные минералы разнообразны по свойствам. В большинстве случаев они имеют низкую твердость, активно взаимодействуют с водой или растворяются в ней.

Метаморфический процесс. Под воздействием высоких температур и давлений, а также магматических газов и воды на некоторой глубине в земной коре происходит преобразование минералов, ранее образовавшихся в экзогенных процессах. Минералы изменяют свое первоначальное состояние, перекристаллизовываются, приобретают плотность, прочность. Так образуются многие минералы-силикаты (роговая обманка, актинолит и др.).

Классификация минералов. Существует много вариантов классификаций минералов. Наиболее широко используется классификация по химическому составу и кристаллической структуре. Вещества одного химического типа часто имеют близкую структуру, поэтому минералы сначала делятся на классы по химическому составу, а затем на подклассы по структурным признакам.

Все минералы разделяют на 10 классов.

Силикаты – наиболее многочисленный класс, включающий до 800 минералов, являющихся основной частью большинства магматических и метаморфических пород. Среди силикатов выделяют группы минералов, характеризующиеся некоторой общностью состава и строения – полевые шпаты, пироксены, амфиболы, слюды, а также оливин, тальк, хлориты и глинистые минералы. Все они по своему составу алюмосиликаты.

Карбонаты. К ним относится более 80 минералов. Наиболее распространены кальцит, магнетизм, доломит. Происхождение в основном экзогенное и связано с водными растворами. В контакте с водой они немного снижают свою механическую прочность, хотя и слабо, но растворяются в воде, разрушаются в кислотах.

Оксиды и гидроксиды. Эти два класса объединяют около 200 минералов, на их долю приходится до 17% всей массы земной коры. Наибольшее распространение имеют кварц, опал и лимонит.

Сульфиды насчитывают до 200 минералов. Типичный представитель пирит. Сульфиды в зоне выветривания разрушаются, поэтому их примесь снижает качество строительных материалов.

Сульфаты. Этот класс объединяет до 260 минералов, происхождение которых связано с водными растворами. Характеризуются небольшой твердостью, светлой окраской. Сравнительно хорошо растворяются в воде. Наибольшее распространение имеют гипс и ангидрит. При соприкосновении с водой ангидрит переходит в гипс, увеличиваясь в объеме до 33%.

Галоиды содержат около 100 минералов. Происхождение связано в основном с водными растворами. Наибольшее распространение имеет галит. Может быть составной частью осадочных пород, легко растворяется в воде.

Минералы классов фосфатов, вольфраматов и самородных элементов встречаются гораздо реже, чем другие.

2. Ледники, их геологическая роль, распределение. Породы, образование в результате работы ледников эпохи оледенения.

Геологические данные говорят о том, что в древние времена оледенение Земли было значительным. На протяжении последних 500-600 тыс. лет на территории Европы насчитывают несколько больших оледенений. Ледники надвигались из района Скандинавии.

В настоящее время льды занимают 10% поверхности суши, 98,5% ледниковой поверхности приходится на полярные области и лишь 1,5% - на высокие горы. Различают три типа ледников: горные, плоскогорий и материковые.

Горные ледники образуются высоко в горах и располагаются либо на вершинах, либо в ущельях, впадинах, различных углублениях. Такие ледники имеются на Кавказе, Урале и т.д.

Лед образуется за счет перекристаллизации снега. Он обладает способностью к пластическому течению, образуя потоки в форме языков. Движение ледников вниз по склонам ограничивается высотой, где солнечного тепла оказывается достаточно для полного таяния льда. Для Кавказа, например, эта высота составляет на западе 2700 м, на востоке – 3600 м. Скорость движения горные ледников различна. На Кавказе, например, она составляет 0,03-0,35 м/сут, на Памире – 1-4 м/сут.

Ледники плоскогорий образуются в горах с плоскими вершинами. Лед залегает нераздельной сплошной массой. От него по ущельям спускаются ледники в виде языков. Такого типа ледник, в частности, располагается сейчас на Скандинавском полуострове.

Материковые ледники распространены в Гренландии, Шпицбергене, Антарктиде и других местах, где сейчас протекает современная эпоха оледенений. Льды залегают сплошным покровом, мощностью в тысячи метров.

Геологическая деятельность льда велика и обусловлена главным образом его движением, несмотря на то, что скорость течения льда примерно в 10000 раз медленнее, чем воды в реках при тех же условиях.

Строительные свойства ледниковых отложений. Моренные (грубые, неоднородные, неслоистые обломочные материалы) и флювиогляциальные (водно-ледниковые) отложения являются надежным основанием для сооружений различного типа. Валунные суглинки и глины, испытавшие на себе давление мощных толщ льда, находятся в плотном состоянии и в ряде случаев даже переуплотнены. Пористость валунные суглинков не превышает 25-30%. На валунных суглинках и глинах здания и сооружения испытывают малую осадку. Эти грунты слабоводопроницаемы и часто служат водоупором для подземных вод.

Такими высокими прочностными свойствами обладают практически все разновидности отложений морен.

Флювиогляциальные отложения со строительной точки зрения хотя и уступают моренным глинистым грунтам по прочности, но являются надежным основанием. Для этого успешно используют различные песчано-гравелистые и глинистые отложения озов и зандров. Некоторое исключение составляют покровные суглинки и ленточные глины. Покровные суглинки легко размокают. Ленточные глины достаточно плотны, слабо водопроницаемы, но могут в условиях насыщения водой быть текучими.

Ледниковые отложения успешно используют как строительный материал (камень, пески, глины); пески озов, камов и зандров пригодны для возведения насыпей и для изготовления бетона. Валуны хороший строительный камень. Имеются примеры использования валунов для изготовления монолитных пьедесталов памятников.

3. Инженерно-геологические исследования для промышленного и гражданского строительства.

Основной задачей инженерно-геологических исследований для промышленного и гражданского строительства является получение информации о инженерно-геологических условиях территории, к которым относятся: рельеф, породы и их свойства, подземные воды, геологические и инженерно-геологические процессы и явления, а также прогноз изменения этих условий под влиянием инженерной деятельности человека.

Инженерно-геологические исследования проводятся последовательно,

в соответствии со стадией проектирования. Детальность исследований возрастает при переходе от одной стадии к другой, изменяются и методы инженерно-геологических исследований.

На начальной стадии инженерных изысканий основным видом инженерно-геологических исследований является инженерно-геологическая съемка, позволяющая в сжатые сроки и при небольших затратах средств оценить инженерно-геологические условия.

При инженерно-геологической съемке на изучаемой территории выделяют, изучают и прослеживают породы, условия залегания их, рельеф, подземные воды, геологические и инженерно-геологические процессы и изображают их на инженерно-геологической карте.

Важно уяснить, что состав и объем инженерно-геологических исследований зависит от сложности инженерно-геологических условий, стадии проектирования, степени изученности района и других факторов.

Следует обратить внимание на значительную сложность инженерно-геологических исследований в районах развития карста, оползней, погребенных долин, где все изыскания проводятся на более значительную глубину, чем при исследованиях в районах с более благоприятными инженерно-геологическими условиями.

4. Лабораторные методы определения деформационных и прочностных свойств грунтов.

Прочность грунтов оценивается максимальной нагрузкой, приложенной к нему в момент разрушения (потери сплошности). Эта характеристика называется пределом прочности R c МПа, или временным сопротивлением сжатию.

На прочность грунтов влияют:

    минеральный состав

    характер структурных связей

    трещиноватость

    степень выветрелости

    степень размягчаемости в воде и др.

Для нескальных грунтов другой важной характеристикой прочности является сопротивление сдвигу. Определение этого показателя необходимо для расчета устойчивости оснований, т.е. несущей способности, а также для оценки устойчивости грунтов в откосах строительных котлованов, расчета давления грунта на подпорные стены и т.д.

Деформационные свойства характеризуют поведение грунтов под нагрузками, не превышающими критические и не приводящими к разрушению. Деформируемость грунтов зависит, как от сопротивляемости и податливости структурных связей, пористости, так и от способности деформироваться слагающих их материалов. Деформационные свойства грунтов оцениваются модулем деформации Е, МПа.

Грунты определяют устойчивость возводимых на них зданий и сооружений, поэтому необходимо правильно определять характеристики, которые обуславливают прочность и устойчивость грунтов при их взаимодействии со строительными объектами.

Образца грунтов для лабораторных исследований отбираются по слоям грунтов в шурфах в буровых скважинах, которые располагают на строительных площадках.

В лабораторию образцы грунтов доставляют в виде монолитов или рыхлых проб. Монолиты – это образцы грунтов с ненарушенной структурой. Такие монолиты отбираются в скальных и связных (пылевато-глинистых) грунтах. Размеры монолитов должны быть не меньше установленных норм. Так, для определения сжимаемости грунта, пробы, отбираемые в шурфах, должны иметь размеры 20×20×20 см. в монолитах пылевато-глинистых грунтов при этом должна быть сохранена природная влажность. Это достигается созданием на их поверхности водонепроницаемой парафиновой или восковой оболочки. В рыхлых грунтах (песок, гравий) образцы отбираются в виде проб определенной массы. Так, для проведения гранулометрического анализа песка необходимо иметь пробу не менее 0,5 кг.

В лабораторных условия можно определять все физико-механические свойства. Каждая характеристика этих свойств определяется согласно ГОСТу, например, природная влажность и плотность грунта – ГОСТ 5180-84, предел прочности – ГОСТ 17245-79, гранулометрический (зерновой) и микроагрегатный состав – ГОТ 12536-79 и т.д.

Лабораторные исследования на сегодня остаются основным видом определения физико-механических свойств грунтов. Ряд характеристик, например, природная влажность, плотность частиц грунта и некоторые другие определяются только в лабораторных условиях и с достаточно высокой точностью. В тоже время лабораторные исследования грунтов имеют свои недостатки:

    они довольно трудоемки и требуют больших затрат времени;

    результаты отдельных анализов, например, определение модуля общей деформации, не дает достаточно точных результатов, что бывает связано с неправильным отбором монолитов, неправильным их хранением, низкой квалификацией исполнителя анализа;

    определения свойств массива грунта по результатам анализов небольшого количества образцов не позволяют получать верное представление о его свойствах в целом.

Это связано с тем, что однотипные грунты, даже в пределах одного массива, все же имеют известные различия в своих свойствах.

5. Структура, текстура, вещественный состав химических и биохимических осадочных пород.

Горные породы представляют собой природные минеральные агрегаты, которые «рождаются» в земной коре.

По своему происхождению их делят на три типа: магматические, осадочные и метаморфические. В земной коре магматические и метаморфические породы занимают 95% от общей ее массы. Осадочные породы располагаются непосредственно на поверхности Земли, покрывая собой в большинстве случаев магматические и метаморфические породы.

Осадочные горные породы. Любая находящаяся на земной поверхности порода подвергается выветриванию, т.е. разрушительному воздействию воды, колебаний температур и т.д. в результате даже самые массивные, прочные магматические породы постепенно разрушаются, образуя обломки разных размеров и распадаясь до мельчайших частиц.

Продукты разрушения переносятся ветром, водой и на определенном этапе переноса отлагаются, образуя рыхлые скопления или осадки. Накопление происходит на дне рек, морей, океанов и на поверхности суши. Из рыхлых скоплений (осадков) с течением времени формируются различные осадочные породы.

Осадочные породы слагают самые верхние слои земной коры, покрывая своеобразным чехлом породы магматического и метаморфического происхождения. Несмотря на то, что осадочные породы составляют всего 5% земной коры, земная поверхность на 75% своей площади покрыта именно этими породами, в связи с чем строительство и производится в основном на осадочных породах. Инженерная геология этим породам уделяет наибольшее внимание.

Осадочные породы принято подразделять на три основные группы:

1) обломочные;

2) химического происхождения (хемогенные);

3) органогенные, возникшие в результате жизнедеятельности организмов.

Это деление несколько условно, так как многие породы имеют смешанное происхождение, например, отдельные известняки содержат в своем составе материал органогенного, химического и обломочного характера.

Хемогенные породы образуются в результате выпадения их водных растворов химических осадков. Такой процесс происходит в водах морей, континентальных усыхающих бассейнов, соленых источниках и т.д. к таким породам относятся различные известняки, известковый туф, доломит, ангидрит, гипс, каменная соль и др. общей для этих пород особенностью является их растворимость в воде, трещиноватость.

Наиболее распространенными породами являются известняки, которые по своему происхождению могут быть также обломочными, органогенными.

Органогенные (биохемогенные) породы образуются в результате накопления и преобразования остатков животного мира и растений, отличаются значительной пористостью, многие растворяются в воде, обладают большой сжимаемостью. К органогенным породам относятся известняк-ракушечник, диатомит.

6. Приток напорных вод в совершенный колодец.

Воды, находящиеся в верхней части земной коры, носят название подземных вод. Науку о подземных водах, их происхождении, условиях залегания, законах движение, физических и химических свойствах, связях с атмосферными и поверхностными водами называют гидрогеологией.

Классификаций подземных вод существует несколько, но главных из них две. Подземные воды подразделяют: по характеру их использования и по условиям залегания в земной коре. В число первых входят хозяйственно-питьевые воды, технические, промышленные, минеральные, термальные. Ко вторым относят: верховодки, грунтовые и межпластовые воды, а также воды трещин, карста, вечной мерзлоты. В инженерно-геологических целях подземные воды целесообразно классифицировать по гидравлическому признаку – безнапорные и напорные.

Межпластовые напорные воды. Эти воды располагаются в водоносных горизонтах между водоупорами. Они бываю ненапорными и напорными (артезианскими).

Межпластовые ненапорные воды встречаются сравнительно редко. Они связаны с горизонтально залегающими водоносными слоями, заполненными водой полностью или частично.

Напорные (артезианские) воды связаны с залеганием водоносных слоев в виде синклиналей и моноклиналей. Площадь распространения напорных водоносных горизонтов называют артезианским бассейном.

Приток напорных вод к водозаборным сооружениям. Водозаборы – это сооружения, с помощью которых происходит захват (забор) подземных вод для водоснабжения, отвод их с территории строительства или просто в целях понижения уровней грунтовых вод. Существуют различные типы подземных водозаборных сооружений: вертикальные, горизонтальные, лучевые.

К вертикальным водозаборам относят буровые скважины и шахтовые колодцы, к горизонтальным – траншеи, галереи, штольни, к лучевым – водосборные колодцы с водоприемными лучами-фильтрами. Тип сооружения для забора подземной воды выбирают на основе технико-экономического расчета, исходя из глубины залегания водоносного слоя, его мощности, литологического состава водоносных пород и намечаемой производительности водозабора.

Водозаборы, состоящие из одной скважины, колодца и т.д., называют одиночными, а из нескольких – групповыми.

Водозаборные сооружения, вскрывающие водоносный горизонт на полную его мощность, являются совершенными, а не на полную – несовершенными.

Отвод грунтовых вод со строительных площадок или снижение их уровней может производиться временно, только на период производства строительных работ или практически на весь период эксплуатации объекта. Временный отвод воды (или снижение уровня) называют строительным водозабором, а во втором случае – дренажами.

Водозаборные колодцы. Колодцы и траншеи, дно которых достигает водоупоров, называют совершенными; если дно располагается выше водоупора, то несовершенными. Уровень воды в колодце до откачки называют статическим, а уровень, пониженный в процессе откачки, - динамическим.

Если из колодца вода не откачивается, то ее уровень находится в одном положении с поверхностью грунтового потока. При откачке воды возникает депрессионная воронка, уровень воды в колодце понижается. Производительность колодца определяется величиной дебита. Под дебитом колодца понимают то количество воды, которое он может дать за единицу времени. При откачке воды в количестве большем, чем величина дебита, т.е. больше того, что притекает к колодцу из водоносного слоя в единицу времени, уровень резко понижается. На некоторое время колодец может остаться без воды.

Приток воды (дебит) к совершенному колодцу определяют по формуле

Q = πk ф [H 2 -h 2 )/lnR-lnr ]

где r – радиус колодца, м.

в несовершенный колодец вода поступает через его стенки и дно. Это усложняет расчет притока. Дебит таких колодцев меньше дебита совершенных колодцев. При откачке вода поступает в колодец только из части водоносного слоя, которую называют активной зоной Н 0 . Глубину активной зоны принимают 4 / 3 высоты столба воды в колодце до откачки. Эти положение позволяют для несовершенного колодца расход рассчитывать по формуле Дюпюи, в интерпритации Паркера:

Q = 1,36k ф [H 2 -h 2 )/lnR-lnr ]

Колодец отдает воду в объеме своего максимального дебита лишь в том случае, если соседние колодцы будут расположены от него на расстоянии не менее двух радиусов влияния.

Список использованной литературы. классификация горных пород учитывает условия их образования , которые предопределяют строение и, ... мрамор), или из многих сложных силикатов. Главные породообразующие минералы представлены кварцем, полевыми шпатами, слюдами...

  • Горные породы и их виды

    Реферат >> Геология

    Понятие горных пород и их классификацию ; - изучить свойства... экзогенных процессов. Сами экзогенные ... Среди главных породообразующих компонентов выделим: 1-реликтовые минералы и... с образованием необратимых остаточных... свойства определяют условия распространения в...

  • Опишите главнейшие месторождения кремнеземистых материалов

    Реферат >> Промышленность, производство

    Значение имеют экзогенные месторождения песка... этом главная их масса... и омыляют их . Основными породообразующими минералами в глинах... дальнейшей классификации . ... условиях высоких давлений и температур, и образование отдельных кристаллов вторичных минералов ...

  • Инженерная геология. Гидрогеология

    Реферат >> Геология

    Процессы пародо образования и предложил первую классификацию минералов и горных... сейсмические волны. 5.Породообразующие минералы , их свойства Условие образование минералов . Минералы – это природные... земли и является главным экзогенным процессом. Море...

  • Данная классификация основана на кристаллохимическом принципе

    Основные классы минералов

    • 1) силикаты
    • 2) оксиды и гидроксиды
    • 3) карбонаты
    • 4) фосфаты
    • 5) сульфаты
    • 6) нитраты
    • 7) сульфиды
    • 8) самородные элементы
    • 1. Класс силикаты - самые распространенные в земной коре (более 33% от всех минералов, инее менее 85% от массы земной коры)

    Основная структурная единица силикатов - кремнекислородный тетраэдр 4- обладает четырьмя свободными валентными связями, за счет которых происходит присоединение других химических элементов и кремнекислородных тетраэдров.

    В зависимости от характера соединений различают

    • а) Островные силикаты (тетраэдры представляют островки одиночных, сдвоеных тетраэдров или групп из 3, 4, 6 тетраэдров, соединенных в кольца, тетраэдры связаны собой катионами Mg 2+ , Fe 2+ , Fe 3+ , Mn 2+). Пример оливин, гранаты, циркон, топаз. Для класса характерна высокая плотность.
    • б) Кольцевые силикаты (тетраэдры соединены в большие кольца) - пример - берилл, турмалин
    • в) Цепочные силикаты (тетраэдры соединяются друг с другом в непрерывные цепочки с радикалом 4-). Пример - авгит.
    • г) Ленточные силикаты (тетраэдры образуют двойные цепочки с радикалом 6-).Пример - роговая обманка, актинолит, нефрит. Для класса характерно волокнистое строение.
    • д) Листовые силикаты (тетраэдры образуют один непрерывный слой). Пример - слюды, гидрослюды, глины, серпентин. Для класса характерна весьма совершенная спайность
    • е) Каркасовые силикаты (полевые шпаты). В силикатах bvth - fdubnяются друг с другом в непрерывные цепочки с радикалом пп из 3,4,6 тетраэдровх элементов данного типа непрерывный каркас состоит из связанных между собой тетраэдров через кислороды всех четырех вершин. Здесь нет свободных валентностей, присоединение других ионов невозможно. Кремний может замещаться алюминием или титаном, при этом возникает добавочная валентность. Для класса характерна совершенная спайность

    Выделяют следующие подклассы

    • 1. калий-натриевые полевые шпаты - ортоклаз, микроклин
    • 2. натриево-кальциевые полевые шпаты - альбит, андезит, лабрадор
    • 3. фельдшпатиды - нефелин
    • 4. цеолита
    • 2. Класс оксидов и гидроксидов (в классе около 200 минералов, 17% от массы земной коры, на долю кварца - 12, 6%, оксиды и гидроксиды - 3.9%). Отличительная способность - высокая твердость и плотность. Представители этого класса объединяют минералы разного происхождения и подразделяются, соответственно названию, на два подкласса: окислов, отличающихся высокой и средней твердостью, и гидроокислов, обладающих низкой твердостью. С другой стороны, названный класс можно разделить на окислы и гидроокислы кремния и окислы и гидроокислы металлов. Окислы и гидроокислы кремния обладают исключительно важным породообразующим значением: только на долю кварца SiO2 приходится до 12% массы земной коры. Скрытокристаллические модификации кварца представлены разноокрашенными халцедонами. Среди водных окислов кремния необходимо назвать опал SiO2 x nH2O. Этим минералам соответственно характерен стеклянный или металлический блеск. Окислы и гидроокислы металлов обладают важнейшим рудообразующим значением. Для них свойственен, соответственно, металлический или матовый блеск. Наибольшее значение принадлежит таким минералам, как магнетит Fe3O4, гематит Fe2O3, лимонит Fe2O3 x nH2O, корунд Al2O, боксит Al2O x nH2O.
    • 3. Класс карбонатов (80 минералов, соли угольной кислоты, 1.5% от массы земной коры) - твердость средняя, блеск неметаллический, окраска светлая, хорошо растворяются в воде, богатой свободной углекислотой Пример - кальцит, арагонит, малахит, доломит. Карбонаты имеют огромное породообразующее значение в составе осадочных и метаморфических пород, составляют до 2 % массы земной коры. Отличительной особенностью карбонатов является их активное взаимодействие с соляной кислотой, сопровождающееся бурным выделением углекислого газа. Блеск большинства карбонатов стеклянный, твердость невысокая. Наиболее распространены такие представители, как кальцит CaCO3, магнезит MgCO3, доломит CaMg(CO3)2, сидерит FeCO3.
    • 4. Класс фосфатов образован разного происхождения солями фосфорной кислоты. Класс насчитывает около 200 минералов, составляющих около 0,7 % массы земной коры. Чаще всего применяются для производства фосфорных удобрений магматического происхождения апатит Ca5 (F, Cl) 3 и близкий к нему по составу, но гипергенного происхождения фосфорит (фосфат кальция). Фосфатам характерны невысокие показатели твердости и плотности.
    • 5. Класс сульфатов (260минералов, 0.1% от массы земной коры) - обычно это химические осадки, залегающие совместно с галоидами. Гипс и ангидрит - агрономические руды, используемые для гипсования солонцов. Сульфаты представляют собой соли серной кислоты, накапливающиеся, в большинстве своем, в соленасыщенной водной среде. Минералам свойственны низкая твердость, неметаллические разновидности блеска, светлая окраска. В земной коре широко распространены гипс CaSO4 x 2H2O, ангидрит CaSO4, мирабилит (глауберова соль) Na2SO4 x 10H2O.
    • 6. Класс галоиды (100 минералов, 0.5% от массы земной коры) - соли галогеноводородных кислот, светлые, прозрачные, хорошо растворимые в воде. Многие из них агрономические руды. Галогениды (галоидные соединения) являются солями галоидно-водородных кислот. Чаще всего встречаются соединения хлористые и фтористые, такие, как применяемые в химической промышленности галит NaCl (каменная соль), сильвин KCl (калийная соль). В оптике используется флюорит CaF2. Галогениды отличаются стеклянным блеском, невысокими твердостью и плотностью, часто легкой растворимостью в воде.
    • 7. Класс нитратов (крайне редко встречаются в природе) - производные солей азотной кислоты. За минералами этого класса утвердилось название «селитра», установлено, что источником N в них является азот воздуха. Образование селитр имеет биогенное происхождение, селитры - ценное минеральное удобрение.
    • 8. Класс сульфидов (200 минералов, 0.15% от массы земной коры) - соли сероводородной кислоты, руды важнейших металлов, устойчивы только ниже УГВ, выше в зоне выветривания минералы разрушаются. Сульфиды - сернистые соединения тяжелых металлов. Образование сульфидов идет без доступа кислорода, большинство из них имеет гидротермальное происхождение. При окислении сульфиды легко переходят в окислы, карбонаты или сульфаты. Ценность сульфидов в том, что они являются рудами на цветные металлы, причем зачастую им сопутствует золото. Наибольшим распространением пользуются пирит (железный колчедан) FeS2, халькопирит (медный колчедан) CuFeS2, галенит (свинцовый блеск) PbS, сфалерит (цинковая обманка) ZnS, киноварь HgS и др. Подавляющему большинству сульфидов характерны металлический блеск, низкая и средняя твердость, высокая плотность. Металлы, входящие в состав сульфидов (Pb, As, Hg, Cd) весьма токсичны и в высоких концентрациях представляют опасность всему живому.
    • 9. Класс самородные элементы (около 50 минералов, включая газы, менее 0.1% от массы земной коры). К нему относятся Pt, Ag, Au, Cu, S, алмаз, графит. Самородные минералы состоят только из одного химического элемента. Большинство имеет огромное хозяйственное значение (алмаз, графит, сера, золото, медь и др.). Физические характеристики самородных минералов отличаются большим разнообразием.

    Классификация минералов построена по химическому составу:

    Таблица 1 -

    Последовательность действий при определении твердости минералов: минералом чертят по стеклу (тв. 5). Если остается царапина на стекле, то твердость минерала равна или больше 5. Тогда используют эталонные минералы с твердостью больше 5. Например, если испытуемый минерал оставляет царапину на эталоне с твердостью 6, а при царапании его кварцем получается глубокая царапина, то его твердость 6,5.

    Для некоторых минералов характерны особые, только им присущие свойства. Так карбонаты вступают в реакцию с соляной кислотой (в куске «вскипает» кальцит, в порошке - доломит, в горячей кислоте - магнезит).

    Галоиды обладают характерным вкусом (галит - соленый).

    Минералы характеризуются различной устойчивостью к выветриванию. Одни минералы разрушаются физически, образуя обломки, другие минералы испытывают химические превращения, преобразуясь в другие соединения (таблица 2).

    Устойчивость минералов к выветриванию

    Таблица 2

    Группа по степени устойчивости Наименование минералов Характер изменений
    Наиболее устойчивые, нерастворимые Кварц Мусковит Лимонит Физическое размельчение без изменения химического состава
    Среднеустойчивые, нерастворимые Ортоклаз Альбит Авгит Роговая обманка Физическое разрушение и гидролиз: образуются вторичные минералы: каолинит, лимонит, опал
    Менее устойчивые, нерастворимые Лабрадор Биотит То же, но процесс протекает интенсивнее
    Слабоустойчивые, нерастворимые Пирит Оливин Окисление: образуется лимонит и серная кислота Окисление: образуется серпентин, хлорит, магнезит
    Слаборастворимые Доломит Кальцит Физическое размельчение и растворение
    Среднерастворимые Ангидрит Гипс Растворение, гидратация, дегидратация
    Сильнорастворимые Галит Интенсивное растворение, пластическое течение при длительном действии одностороннего воздействия

    Методика определения минералов.

    Для выполнения практической работы необходимо пользоваться определителем минералов.

    Последовательность выполнения работы:

    1. Определить облик зерен агрегата минерала.

    2. Определить цвет минерала, если минерал темного цвета, то провести минералом по фарфоровой пластинке для определения цвета черты (порошка).

    3. Определить блеск минерала.

    4. Для определения интервала твердости провести минералом по стеклу.

    5. Минералы средней твердости (3-3,5) надо проверить на реакцию с 10 %-ным раствором соляной кислоты .

    6. Попытаться найти на образце ровные полированные грани - т.е. определить спайность.

    7. По набору признаков в определителе найти название и состав минерала.

    8. Отметить в состав каких горных пород входит данный минерал.

    Данные по минералам внести в таблицу 3.

    Характеристика породообразующих минералов

    Таблица 3

    Задание

    Список минералов для изучения:

    1. Самородные элементы: графит, сера.

    2. Сульфиды: пирит.

    3. Оксиды и гидроксиды: кварц, халцедон, опал, лимонит.

    4. Галогениды: галит, сильвин.

    5. Карбонаты: кальцит, доломит, магнезит.

    6. Сульфаты: гипс, ангидрит.

    7. Силикаты: оливин, гранат, авгит, роговая обманка, тальк, серпентин, каолин, слюды, хлорит, ортоклаз, микроклин, альбит, нефелин.

    СПИСОК ЛИТЕРАТУРЫ

    Павлинов В.Н. и др. Пособие к лабораторным занятиям по общей геологии. - М.: Недра, 1988. c. 5-7, 11-49.

    Изучение магматических горных пород

    Цель работы: приобрести навыки в определении магматических горных пород. Изучить инженерно-строительные характеристики магматических горных пород и их применение в строительстве.

    Оборудование: учебная коллекция магматических пород, лупы, шкала Мооса.

    Общие сведения о горных породах

    Горными породами называют самостоятельные геологические тела, состоящие из одного или нескольких минералов более или менее постоянного состава и строения.

    По способу и условиям образования все породы делятся на магматические, осадочные и метаморфические.

    Минералогический состав горных пород различен. Они могут состоять из одного (мономинеральные) или нескольких минералов (полиминеральные).

    Внутреннее строение горных пород, характеризуется их структурой и текстурой.

    Структура - это строение породы, обусловленное формой, размерами и взаимоотношениями ее составных частей.

    Текстура породы определяет распределение ее составных частей в пространстве.

    Все горные породы классифицируются по условиям образования на магматические, осадочные и метаморфические породы.

    Условия образования магматических горных пород

    Магматические горные породы образуются в результате остывания магмы. Магма - это каменный расплав силикатного состава, образующийся на больших глубинах в недрах Земли. Магма может остывать в глубине земной коры под покровом вышележащих пород и на поверхности или близ поверхности Земли. В первом случае процесс остывания протекает медленно, и вся магма успевает раскристаллизоваться. Структуры таких глубинных пород полнокристаллические, зернистые.

    При быстром поднятии магмы на поверхность земли температура ее падает быстро, от магмы отделяются газы и пары воды. В этом случае породы или полностью не раскристаллизованы (стекловатая структура), или раскристаллизованы частично (полукристаллическая структура).

    Глубинные породы называют интрузивными. Их структуры могут быть: мелкозернистая (зерна <0,5 мм), среднезернистая (размер зерен 0,5-1 мм), крупнозернистая (от 1 до 5 мм), гигантозернистая (> 5 мм), неравномернозернистая (порфировидная).

    Излившиеся породы называют эффузивными. Их структуры - порфировая (в скрытокристаллической массе выделяются отдельные крупные кристаллы), афанитовая (плотная скрытозернистая масса), стекловатая (порода почти целиком состоит из нераскристаллизовавшейся массы - стекла).

    Текстуры магматических пород: интрузивные породы почти всегда массивные. В эффузивных породах наряду с массивной текстурой встречаются пористые и пузырчатые.

    Физико-химические условия образования пород на глубине и на поверхности резко различны. По этой причине из магмы одного и того же состава в глубинных и поверхностных условиях образуются разные породы. Каждой интрузивной породе соответствует определенная излившаяся порода.

    Наряду с классификацией магматических пород по условиям залегания, их классифицируют по химическому составу в зависимости от содержания кремнекислоты SiO 2 (таблица 4).

    Классификация магматических пород

    Таблица 4

    Состав породы Породы интрузивные (глубинные) Породы эффузивные (излившиеся)
    химический минералогический
    Кислые SiO 2 > 65 % Кварц, полевой шпат, слюда Гранит Липарит, пемза, кварцевый порфир, обсидиан
    Средние SiO 2 (65-52 %) Калиевый полевой шпат, плагиоклаз, роговая обманка Плагиоклаз, роговая обманка Сиенит Диорит Трахит, ортофир Андезит, андезитовый порфирит
    Основные SiO 2 = 52-40 % Плагиоклаз, пироксен Плагиоклаз Габбро Лабрадорит Базальт, диабаз
    Ультраосновные SiO 2 < 40 % Оливин Оливин, пироксен Пироксен Дунит Перидотит Пироксенит

    Инженерно-строительная характеристика магматических горных пород.

    Все магматические горные породы имеют высокую прочность, значительно превышающую нагрузки, возможные в инженерно-строительной практике, нерастворимы в воде и практически водонепроницаемы (кроме трещиноватых разностей). Благодаря этому они широко используются в качестве оснований ответственных сооружений (плотин). Осложнения при строительстве на магматических породах возникают в том случае, если они трещиноваты и выветрелы: это приводит к уменьшению плотности, повышению водопроницаемости, что значительно ухудшает их инженерно-строительные свойства.

    Применение в строительстве

    Интрузивные магматические породы, такие как гранит, сиенит, диорит, габбро, лабрадорит применяются как облицовочный материал.

    Инженерно-геологические свойства метаморфических пород

    Массивные метаморфические породы обладают высокой прочностью, практически водонепроницаемы и, за исключением карбонатных, не растворяются в воде.

    Ослабление показателей прочности происходит за счет трещиноватости и выветрелости.

    Для сланцеватых горных пород характерна анизотропность свойств, т.е. прочность значительно ниже вдоль сланцеватости, чем перпендикулярно ей. Такие метаморфические породы образуют тонкоплитчатые подвижные осыпи.

    Наиболее прочными и устойчивыми породами являются кварциты. Метаморфические породы широко применяются в строительстве. Мраморы, кварциты - это облицовочный материал.

    Кровельные сланцы (филлиты) служат материалом для покрытия зданий.

    Тальковые сланцы - огнеупорный и кислотоупорный материал.

    Кварциты применяются как сырье для производства огнеупорного кирпича - динаса.

    Методика определения метаморфических горных пород

    Определение метаморфических пород нужно начинать с установки их минерального состава. Затем определяется текстура, структура, цвет и исходная порода.

    ЗАДАНИЕ

    Изучить по внешним признакам метаморфические породы, находящиеся в учебной коллекции. Описать их в тетради по следующему плану:

    1. Название;

    3. Структура и текстура;

    4. Минеральный состав;

    5. Исходная порода;

    6. Инженерно-геологические особенности;

    7. Применение в строительстве.

    СПИСОК ЛИТЕРАТУРЫ

    Павлинов В.Н. и др. Пособие к лабораторным занятиям по общей геологии. - М.: Недра, 1988. с. 77-85.

    Геологические карты и разрезы

    Цель работы: освоить принцип построения геологических карт и разрезов. Научиться читать условные знаки геологических карт. Приобрести навыки определения условий залегания горных пород по геологическим картам.

    Общие сведения

    Геологическая карта отражает геологическое строение земной поверхности и примыкающей к ней верхней части земной коры. Геологическая карта строится на топографической основе. На ней с помощью условных знаков показывается возраст, состав и условия залегания обнаженных на земной поверхности горных пород.

    Так как более 90 % поверхности суши покрыто породами четвертичного возраста, то на геологических картах показывают коренные породы без четвертичного чехла.

    Для целей строительства используются геологические карты крупномасштабные (1:25000 и крупнее).

    При составлении геологических карт необходимо знать возрастную (геохронологическую) последовательность пород, участвующих в строении изучаемого района.

    В настоящее время создана единая геохронологическая шкала, отражающая историю развития земной коры.

    В шкале приняты следующие временные и соответствующие им стратиграфические (стратум - слой) подразделения (таблица 6).

    Геохронологические и стратиграфические подразделения

    Таблица 6

    Геохронологическая шкала

    Таблица 7

    Эра (группа) Период (система) Индекс Длительность млн. лет Эпоха (отдел) Индекс Цвет на карте
    Кайнозойская KZ 65 млн. лет Четвертичный Q 1,7-1,8 Голоцен Плейстоцен Q 2 Q 1 Бледно-серый
    Неогеновый N Плиоцен Миоцен N 2 N 1 Желтый
    Палеогеновый Р Олигоцен Эоцен Палеоцен Р 3 Р 2 Р 1 Оранжево-желтый
    Мезозойская МZ 170 млн. лет Меловой К Верхнемеловая Нижнемеловая К 2 К 1 Зеленый
    Юрский J 55-60 Верхнеюрская Среднеюрская Нижнеюрская J 3 J 2 J 1 Синий
    Триасовый Т 40-45 Верхнетриасовый Среднетриасовый Нижнетриасовый Т 3 Т 2 Т 1 Фиолетовый
    Палеозойская РZ Пермский Р 50-60 Верхнепермская Нижнепермская Р 2 Р 1 Оранжево-коричневый
    Каменно-угольный С 50-60 Верхнекаменно-угольная Среднекаменно-угольная Нижнекаменно-угольная С 3 С 2 С 1 Серый
    Девонский С Верхнедевонский Среднедевонский Нижнедевонский Д 3 Д 2 Д 1 Коричневый
    Силурийский S 25-30 Верхнесилурийский Нижнесилурийский S 2 S 1 Серо-зеленый (светлый)
    Ордовикский О 45-50 Верхнеордовикский Среднеордовикский Нижнеордовикский О 3 О 2 О 1 Оливковый
    Кембрийский Є 90-100 Верхнекембирский Среднекембирский Нижнекембирский Є 3 Є 2 Є 1 Сине-зеленый (темный)
    Протерозойская PR Сиренево-розовый
    Архейская AR Розовый

    Условные знаки на географических картах

    Для указания состава, времени формирования и условий залегания горных пород на геологических картах применяются цветовые, буквенные, цифровые и штриховые условные знаки.

    Цветовые знаки применяются для обозначения возраста горных пород, а также состава интрузивных и вулканических пород (см. геохронологическую шкалу). Буквенными и цифровыми обозначениями (индексами) обозначается возраст, а для интрузивных и вулканических пород - и их состав. Например (рисунок 1):

    Рисунок 1 - Обозначение возраста пород

    Стратиграфические термины употребляются в отношении горных пород, например: породы каменноугольной системы (а не периода).

    Для обозначения генезиса осадочных пород применяются строчные латинские буквы: m - морские, g - ледниковые, а - аллювиальные. Например: аQ - аллювиальные четвертичные отложения.

    Интрузивные и эффузивные породы индексируются с помощью прописных греческих букв: γ - граниты, δ - диориты,ξ - сиениты, ν - габбро, σ - дуниты.

    Штриховые обозначения применяются обычно на геологических картах, выполненных одним цветом, а также на разрезах и в стратиграфических колонках

    Наиболее часто употребляемые штриховые обозначения показаны на рисунке 2.

    1 - пески; 2 - песчаники; 3 - галечники; 4 - конгломераты; 5 - кремнистые породы (яшмы, опоки, диатомиты); 6 - известняки; 7 - доломиты; 8 - глины; 9 - мергели; 10 - породы кислого состава; 11 - их лавы и туфы; 12 - породы среднего состава; 13 - их лавы и туфы; 14 - породы основного состава; 15 - их лавы и туфы.

    Рисунок 2 - Штриховые условные знаки

    Слой и слоистость

    Слоем (или пластом) называют более или менее однородный обособленный осадок (или горную породу), ограниченный поверхностями наслоения.

    Верхняя поверхность называется кровлей, нижняя - подошвой. Расстояние между кровлей и подошвой характеризует его мощность.

    Возможны два случая соотношения слоистых толщ. В первом - каждая вышележащая толща без следов перерыва в накоплении осадков залегает на подстилающих слоях, образуя согласное залегание пород.

    Во втором случае между толщами стратиграфическая последовательность прерывается и в результате появляется стратиграфическое несогласие, которое может быть и угловым (рисунок 3).

    Рисунок 3 - Несогласное залегание горных пород

    Стратиграфические колонки и геологические разрезы

    Геологические карты обычно сопровождаются стратиграфическими колонками и разрезами. На стратиграфической колонке в возрастной последовательности снизу вверх от древних к молодым условной штриховкой изображаются дочетвертичные осадочные, вулканические и метаморфические породы, развитые на территории. Интрузивные образования на колонке не показываются.

    Геологические разрезы представляют собой изображение залегания пород на плоскости вертикального сечения земной коры от ее поверхности на ту или иную глубину.

    Горизонтальный и вертикальный масштабы разрезов должны соответствовать масштабу карты (кроме случаев, когда залегание пород горизонтальное). На каждом разрезе показывают: гипсометрический профиль местности, линию уровня моря, шкалу вертикального масштаба с делениями через 1 см на обоих концах разреза.

    Разрезы раскрашиваются и индексируются в соответствии с геологической картой.

    При горизонтальном залегании слоев разрезы обычно строят через самую высокую и низкую точки рельефа.

    При строительстве важно знать геологическое строение верхней части земной коры. Верхние горизонты в основном характеризуются горизонтальным залеганием пород.

    Методические указания и задание для построения геологического разреза

    В приложении (выдается преподавателем) дана геологическая карта бассейна р. Кача и стратиграфическая колонка. Необходимо изучить последовательность залегания пород по колонке, их описание, возраст, мощность. На листе ватмана размером А4 приклеить ксерокопию карты, а стратиграфическую колонку начертить слева от карты. Условные обозначения поместить справа. Геологический разрез выполняется внизу (рисунок 4).

    Геологическая карта бассейна р. Кача

    Масштаб 1:25000

    Б

    Геологический разрез по АБ

    Масштабы гор.

    Рисунок 4 - Расположение элементов чертежа

    Построение разреза начинают с вычерчивания профиля разреза. Для этого на листе ватмана проводят несколько горизонтальных линий, расстояние между которыми должно быть равно сечению рельефа горизонталями в масштабе карты. В заданной карте горизонтали секут рельеф через 10 м, что в масштабе 1:10000 составит 1 мм. Линейки ограничиваются вертикальными линиями, располагающимися на расстоянии, соответствующем длине разреза. У вертикальных линеек с обеих сторон разреза указываются высоты, соответствующие высоте горизонталей на карте, пересекаемых линией разреза. Далее измеряют на карте расстояния до линии разреза до пересечения с горизонталями и переносят эти расстояния на линейки, имеющие те же высотные отметки. Полученные точки соединяют плавной кривой, которая и будет представлять собой профиль рельефа.

    Вычертив кривую рельефа поверхности Земли по линии разреза, переносят на нее все точки пересечения линии разреза с геологическими границами. Для этой цели можно пользоваться либо циркулем-измерителем, либо отдельной узкой полоской бумаги. Найдя точки выхода геологических границ на поверхности рельефа, проводим горизонтальные линии между стратиграфическими комплексами. На концах разреза ставятся буквы А и Б, а на сам разрез наносятся индексы и условная штриховка для пород.

    Задание

    Построить геологический разрез по линии, предложенной преподавателем, используя учебную карту в приложении (выдается преподавателем).

    Список литературы

    Павлинов В.Н. и др. Пособие к лабораторным занятиям по общей геологии. - М.: Недра, 1988. С. 86-102.

    Оценка Инженерно-геологических условий строительства

    Цель работы: приобрести навыки обработки первичных данных инженерно-геологических изысканий и их оценки. Оборудование: лист ватмана 70х30 см, чертежные принадлежности.

    Современные методы строительства позволяют осваивать даже очень трудные по природным условиям участки, однако это требует больших дополнительных капиталовложений. Оценка целесообразности таких затрат и пригодности той или иной территории для строительства всегда связана с установлением объема необходимых для освоения участка инженерных мероприятий.

    С этой целью проводятся инженерно-геологические изыскания, анализ которых позволяет:

    1. Оценить инженерно-геологические условия возведения сооружений, оценить возможное влияние сооружений на состояние и свойства пород и устойчивость территории в целом;

    2. Установить характер инженерных мероприятий, обеспечивающих устойчивость и надежность сооружений.

    Выполняя эту заключительную работу, студент получает некоторые навыки обработки первичных данных инженерно-геологических изысканий и их оценки.

    В качестве исходных материалов используются данные разведочного бурения и нивелировки.

    Работа складывается из двух этапов:

    1) построение геологического разреза по данным бурения скважин;

    2) составление пояснительной записки к построенному разрезу.

    Методика построения геологического разреза.

    Студент выполняет тот вариант задания, номер которого совпадает с последней цифрой его шифра. По данным нивелировки и бурения построить геологический разрез в масштабах: горизонтальный 1: 5000, вертикальный

    1: 500. Данные по бурению в приложении (выдается преподавателем).

    Для построения разреза необходим лист ватмана 70 х 30 см. Чертеж выполняется в карандаше.

    С левой стороны листа чертим вертикальную масштабную линейку в принятом масштабе (1: 500). Максимальная отметка на этой линейке равна максимальной абсолютной отметке рельефа местности (по данным нивелировки), минимальная - самой низкой абсолютной отметке забоя скважины (глубина проходки скважины). Под масштабной линейкой проводим условную базисную линию, равную длине разреза. Далее на базисную линию наносим в горизонтальном масштабе (1: 5000) расстояние между точками в соответствии с данными нивелировки. Из точек восстанавливаем перпендикуляры до абсолютных отметок поверхности земли (устья скважин).

    Соединив устья скважин плавной линией, получаем линию топографического профиля (поверхности земли). Рядом с устьем скважин указываем номер и абсолютную отметку устья скважины . На осевых линиях скважин небольшими горизонтальными штрихами показываем границы распространения мощности в м тех или иных пород сверху вниз, а рядом указываем условными обозначениями литологический состав и возраст пород, то есть наносим разрезы данных буровых скважин.

    Далее штрихи, изображающие границы одинаковых по составу и возрасту пород в соседних скважинах, соединяем. Если порода, обнаруженная в одной скважине, в соседней отсутствует, то на разрезе изображаем ее постепенным выклиниванием к середине расстояния между скважинами. После увязки всех границ пород участки между скважинами заштриховываем согласно условным обозначениям (рисунок 2).

    Отметку появления уровня грунтовых вод отмечаем рядом с выработкой справа на высоте, соответствующей данной отметке.

    Положение уровня грунтовых вод соединяем в единую пунктирную линию, а установившиеся уровни напорных вод показываем рядом с выработкой вертикальной стрелкой на высоту напора воды (от отметки появления до отметки установления напорных вод).

    Условные обозначения горных пород располагаем в строгой последовательности от более молодых к более древним и наносим справа от разреза (сверху вниз) или под разрезом (слева направо). Разрез подписываем внизу. Например: «Геолого-литологический разрез по линии скважин (1-5)». Под названием посередине помещаем масштаб горизонтальный и вертикальный.

    К геолого-литологическому профилю необходимо приложить пояснительную записку, включающую описание:

    1) рельефа местности;

    2) геологического строения;

    3) гидрогеологических условий;

    4) инженерно-геологических условий строительства.

    Рельеф местности.

    Необходимо указать тип рельефа (горный или равнинный), степень его пересеченности и абсолютные отметки отдельных элементов. Особое внимание обращается на описание долины реки: протяженность, ширину, глубину русла реки, наличие террас, их высоты над уровнем воды, ширину, крутизну коренных склонов.

    По расположению относительно русла выделяют симметричные и асимметричные террасы, а также двухстороннюю и одностороннюю пойму. По условиям образования террасы подразделяются на аккумулятивные (сложенные целиком аллювием), эрозионные (сложенные целиком коренными породами) и цокольные (у которых часть склона над рекой представлена коренными породами, покрытыми сверху толщей аллювия).

    Геологическое строение.

    Здесь приводится литолого-стратиграфическая характеристика пород и условия их залегания.

    Вначале приводится возраст коренных пород и условия их залегания, а также генетические разновидности четвертичных отложений.

    Элювий (е) - обломочный материал формируется под влиянием выветривания и образует скопление на месте разрушения.

    Делювий (d) - обломочный материал переносится по склону дождевой или талой водой и накапливается на склоне или у подножия возвышенностей.

    Пролювий (р) - продукты разрушения, выносимые мощными временными потоками (селями) к подножию возвышенностей и располагающиеся в виде конусов выноса.

    Аллювий (а) - отложения, сформированные в речных долинах речными потоками.

    Коллювий (q) - обломочные отложения, перемещенные вниз по склону под действием силы тяжести.

    Флювиогляциальные (fq) - отложения потоков талых ледниковых вод ниже края ледника.

    Затем приступают к детальному описанию породы по плану:

    а) название породы, группа по генезису, возраст;

    б) минералогический состав, структура, текстура;

    в) мощность и ее изменение по профилю;

    г) условия залегания.

    Описание пород ведется в возрастной последовательности от древних к молодым.

    Гидрогеологические условия.

    При характеристике гидрогеологических условий отмечается наличие различных типов подземных вод и общее количество водоносных горизонтов. Для каждого водоносного горизонта приводятся следующие сведения: тип подземных вод (верховодка, грунтовые, межпластовые, трещинные), напорные или ненапорные.

    Необходимо обратить внимание на гидравлическую связь между соседними водоносными горизонтами (связь устанавливается по совпадению пьезометрических уровней между напорными горизонтами, или с горизонтом вышележащих грунтовых вод).

    Инженерно-геологические условия строительства.

    Оценка инженерно-геологических условий строительства дается в виде анализа инженерно-геологических свойств пород (плотность, влажность, водопроницаемость, устойчивость к механическим воздействиям, просадочность, набухание, оползание, карстообразование и другие геологические явления).

    Требования к составу и оформлению работы.

    Объем пояснительной записки - 5-6 страниц рукописного текста на листах формата А4. Титульный лист выполняется по общепринятым требованиям к письменной работе с указанием номера варианта.

    Для выполнения работы потребуется литература.

    Текст должен быть лаконичным и в то же время развернутым и исчерпывающим.

    В конце работы приводится список используемой литературы.

    СПИСОК ЛИТЕРАТУРЫ

    Ананьев В.П. Инженерная геология. - М.: Высшая школа, 2000.

    В зависимости от химического состава все минералы разде­ляются на несколько классов, важнейшими из которых являются: самородные элементы, сульфиды, галоиды, окислы и гидроокислы, карбонаты, фосфаты, сульфаты, силикаты, а также природные органические соединения.

    Самородные элементы. Это класс минералов, со­стоящих из какого-либо одного элемента. Они мало распростра­нены в земной коре. К ним относятся золото, серебро, медь, платина, алмазы, графит, сера и др.

    Сера - S. Встречается в виде кристаллов и землистых агре­гатов, желваков, налетов; цвет соломенно-желтый до бурого; черта бесцветная; блеск жирный; твердость 1,5-2,5; спайность несовершенная; относительная плотность 2; образуется при химическом разложении гипса и сернистых соединений, при вул­канических извержениях.

    Сульфиды (сернистые соединения). Класс сульфидов объединяет свыше 250 минералов. В химическом отно­шении сульфиды представляют собой соединения различных эле­ментов с серой (производные H 2 S). Наиболее распространены галенит, сфалерит, халькопирит, пирит, борнит, киноварь, молиб­денит и др.

    Галенит (свинцовый блеск) - PbS. Кристаллы кубической формы; цвет свинцово-серый; черта серовато-черная, блестящая; непрозрачен; блеск металлический; твердость 2,5; спайность совершенная по кубу; относительная плотность 7,5; часто встре­чается с пиритом и сфалеритом; нередко содержит примеси се­ребра; происхождение гидротермальное. Применяется как руда на свинец и серебро.

    Сфалерит (цинковая обманка) - ZnS. Встречается в виде кристаллов тетраэдрической формы; цвет бурый, коричневый, черный, реже желтый, зеленоватый; красный, иногда бесцвет-64


    ный; черта желтая; блеск жирный, алмазный; прозрачен или полупрозрачен; изотропен; твердость 3-4; спайность весьма совершенная; относительная плотность 3,5-4,2; образуется при гидротермальных процессах. Применяется как цинковая руда.

    Халькопирит (медный колчедан) - CuFeS 2 . Встречается в виде неправильных зерен и сплошных масс; кристаллы тетраэдриче­ской и октаэдрической формы; цвет латунно-желтый, нередко с пестрой побежалостью; черта черная с зеленоватым оттенком; блеск металлический; твердость 3-4; спайность несовершенная; относительная плотность 4,1-4,3; непрозрачен; слабо анизотро­пен; происхождение различное. Применяется как медная руда.

    Пирит (серный колчедан) - FeS 2 . Самый распространенный сульфид; встречается в виде кристаллов кубической формы, сплошных масс, конкреций и т. п.; цвет светло-желтый, часто с побежалостью латунно-желтого, бурого и пестрого цвета; не­прозрачен; изотропен; твердость 6,65; спайность весьма несовер­шенная; относительная плотность 4,9-5,2; происхождение раз­личное. Применяется как сырье для получения серной кислоты.

    Галоиды. Минералы этого класса представляют собой соли галоидно-водородных кислот: НС1, HF, НВг, HI. Наиболее распространены соли хлористой кислоты - галит и сильвин.

    Галит (каменные соли) - NaCl. Встречается в виде кристал­лических агрегатов, реже - отдельных кристаллов кубической формы; бесцветный или белого цвета, встречаются разности крас­ного, серого, синего, желтого цветов; прозрачен и просвечивает; твердость 2; спайность совершенная в трех направлениях; отно­сительная плотность 2,15; хрупкий; легкорастворим в воде; вкус соленый; образуется в процессе осадконакопления, осаж­дается на дне соленых озер и залегает в виде пластов.

    Окислы и гидроокислы. Минералы этого класса составляют около 17 % массы литосферы. Класс делится на две группы: 1) окислы и гидроокислы кремния (кварц, халцедон, опал и др.), 2) окислы и гидроокислы металлов (гематит, магне­тит, лимонит, касситерит, корунд и др.).

    Кварц - SiO 2 . Один из наиболее распространенных в природе минералов, на его долю приходится более 12 % массы литосферы; встречается в виде зернистых агрегатов, хорошо образует кри­сталлы в форме шестигранной призмы, оканчивающейся с одной или двух сторон шестигранной пирамидой; грани часто покрыты тонкой поперечной штриховкой; цвет кварца различный; его бес­цветная прозрачная разновидность - горный хрусталь, серо­ватая- дымчатый кварц, фиолетовая - аметист, черная - ма-рион; блеск на гранях стеклянный, на изломе - жирный; твер­дость 7; спайность весьма несовершенная; излом раковистый, неровный; относительная плотность 2,7; происхождение кварца различное.

    Скрытокристаллическая разновидность кварца называется хал­цедоном. Он образует плотные массы, натечные образования,

    3 Абрикосов И. X. и др. 65


    желваки молочно-ceporo, желтого и других цветов; полосчатая разновидность халцедона называется агатом, а загрязненная песком и глиной - кремнем.

    Опал - SiO 2 -nH 2 O. Аморфный минерал, встречающийся в виде плотных натечных масс; цвет желтоватый, оранжевый, красно­ватый, черный; блеск слабостеклянный, слабожирный; излом раковистый, неровный; твердость 5,5; относительная плотность 1,9-2,3; при нагревании кусочков опала в пробирке выделяется вода, этим опал отличается от халцедона.

    Гематит (железный блеск) - Fe 2 O 3 . Встречается в виде листовых, чешуйчатых, зернистых и землистых агрегатов, редко в виде кристаллов ромбоэдрического строения; цвет в кристаллах серо-стальной до черного, в чешуйках просвечивает тёмнокрас­ным, землистые агрегаты - красные; черта вишнево-красная; блеск металлический; твердость 5-6; спайность несовершенная; излом раковистый; непрозрачный; относительная плотность 5,2; обладает магнитными свойствами; образуется при метаморфиче­ских и гидротермальных процессах. Гематит является важнейшей железной рудой.

    Магнетит (магнитный железняк) - FeO-Fe 2 O 3 . Встречается в виде зернистых масс, вкраплений, кристаллов; цвет железо-черный с синеватым оттенком; черта черная; блеск металличе­ский; непрозрачный; твердость 5,5-6,5; спайность несовер­шенная; относительная плотность 4,9-5,2; обладает сильными магнитными свойствами; наиболее крупные месторождения имеют метаморфическое происхождение.

    Карбонаты. Класс карбонатов объединяет минералы, являющиеся солями угольной кислоты Н 2 СО 3 . Для всех карбона­тов характерна способность вступать в реакцию с соляной кисло­той НС1. На их долю приходится около 2 % массы земной коры. Некоторые карбонаты являются рудами металлов: железа, мар­ганца, меди, цинка, свинца и др.

    Кальцит (известковый шпат) - СаСО 3 . Самый распростра­ненный минерал этого класса, он целиком слагает такие породы, как известняк, мел и мрамор; бесцветный, белый, из-за примесей иногда имеет желтые, розоватые, сероватые и голубоватые тона; черта белая; блеск стеклянный, иногда перламутровый; прозрач­ный или просвечивает, прозрачные кристаллы кальцита называются исландским шпатом; твердость 3; спайность совершенная; отно­сительная плотность 2,6; бурно реагирует с соляной кислотой; происхождение осадочное, гидротермальное, биогенное, может быть также продуктом метаморфизма. Применяется в строитель­ной, химической, металлургической, оптической и других отрас­лях промышленности.

    Доломит - MgCa(CO 3) 2 . Встречается в виде зернокристалли-ческих масс, почвовидных, шаровидных и других агрегатов; цвет белый, сероватый, красноватый, зеленоватый; блеск стеклянный; твердость 3,5-4, спайность совершенная; относительная плот-


    ность 2,8-2,9; реагирует с НС1 в порошке или при нагревании; происхождение гидротермальное и осадочное. Применяется в строи­тельной, металлургической и других отраслях промышленности.

    Фосфаты. Фосфаты относительно слабо распространены. Их масса не превышает 0,1 % массы литосферы. Из многочислен­ных минералов этого класса, в основном солей ортофосфорной кислоты, наибольшее практическое значение имеют апатит и фосфорит.

    Апатит - Са 5 (F или С1) (РО 4) 3 . Встречается в виде мелко­зернистых масс, реже в виде отдельных кристаллов в форме шестигранной призмы, достигающих огромных размеров; цвет белый, зеленый, фиолетовый, бурый; черта светлая; блеск стек­лянный, на изломе жирный; твердость 5; спайность несовершен­ная; излом неровный; относительная плотность 3,2; образуется чаще магматическим путем при внедрении щелочных магм. Слу­жит сырьем для получения фосфора и фосфорных удобрений.

    Фосфориты имеют такой "же состав, что и апатиты, но обра­зуются в результате экзогенных процессов; генезис - осадочный, химический и биогенный; легко растворяются при нагревании в соляной и азотной кислотах. Применяются для получения су­перфосфата.

    Сульфаты. Минералы этого класса - соли серной кис­лоты. Образуются они в основном в результате осаждения солей серной кислоты в лагунах и озерах и при окислении сульфидов. Наиболее распространены гипс и ангидрит.

    Гипс -CaSO 4 -2H 2 O. Встречается в виде толсто- и тонко-таблитчатых кристаллов; цвет белый, бесцветный, примеси обус­ловливают различные цветные тона; черта белая; блеск стеклян­ный; твердость 2; спайность весьма совершенная; относительная плотность 2,3. При обезвоживании гипс переходит в ангидрит.

    Ангидрит - CaSO 4 . Встречается в виде плотных мелкозер­нистых масс; цвет белый; блеск стеклянный; просвечивает; твер­дость 3-3,5; спайность совершенная; относительная плотность 3.

    Силикаты. Самый многочисленный класс минералов. На их долю приходится до 33 % всех минералов. Силикаты составляют до 75 % массы земной коры (без кварца, сходного с ними по внутренней структуре). Участвуют в образовании пород, некоторые представляют собой ценные полезные ископаемые: драгоценные камни, слюды, керамическое сырье, руды. Силикаты- соли кремниевых и алюмокремниевых кислот. Наиболее распро­странены полевые шпаты. На их долю приходится до 50 % массы земной коры. В свою очередь, полевые шпаты делятся на калиевые полевые шпаты и плагиоклазы.

    Из калиевых полевых шпатов наиболее представителен орто­клаз.

    Ортоклаз - KAlSi 3 O 8 . Является составной частью осадочных,
    пзверженных и метаморфических пород; встречается в виде зер­
    нистых масс и кристаллов таблитчатой формы; цвет белый, светло-
    3* 67


    серый, розовый, мясо-красный; блеск стеклянный; твердость 6; спайность совершенная; относительная плотность 2,6; разно­видность ортоклаза - микроклин.

    Плагиоклазы объединяют группу минералов, состоящих из смеси двух конечных минералов этой группы: альбита - NaAlSi 3 O 8 и анортита - CaAl. 2 Si 2 O 8 , имеющих одинаковую кристалличе­скую решетку. Такая смесь минералов называется изоморфной. Группу плагиоклазов составляют следующие минералы: альбит, олигоклаз, андезин, Лабрадор, битовнит и анортит.

    Альбит. Встречается в виде плотных зернистых масс; образует кристаллы в виде мелких пластинок, сросшихся в щетки; цвет обычно белый; черта белая или бесцветная; блеск часто перла­мутровый; твердость 5,5-6,0; спайность совершенная по двум направлениям; относительная плотность 2,6.

    Одну из групп силикатов составляют пироксены.

    Авгит - Ca(Mg, Fe, Al) (Si, A1) 2 O 6 . Наиболее яркий пред­ставитель группы пироксенов; чаще встречается в виде зернистых агрегатов; кристаллы имеют форму восьмигранных столбиков; цвет зеленовато-черный и черный; блеск стеклянный; твердость 5-6; спайность средняя; относительная плотность 3,5.

    В отличие от пироксенов минералы группы амфиболов имеют иное строение кристаллов. Типичным минералом этой группы является роговая обманка.

    Роговая обманка. Характеризуется очень сложным и непо­стоянным химическим составом; кристаллы представляют собой удлиненные четырех- и шестигранные призмы; встречаются в виде волокнистых и плотных масс и отдельных кристаллов; цвет темно-зеленый, черный; черта зеленая; твердость 5,5; спайность совер­шенная в двух направлениях, в третьем направлении - занози­стый излом; блеск стеклянный; относительная плотность 3,1-3,3.

    Большую группу минералов образуют листовые силикаты, к которым относят слюды (мусковит и биотит), тальк, серпентин, каолинит, глауконит и др.

    Мусковит (белая слюда). Бесцветный минерал; блеск стеклян­ный, перламутровый; твердость 2-3; спайность весьма совер­шенная, раскалывается на очень тонкие пластинки по плоскостям спайности; относительная плотность 2,7; образуется при магма­тических и метаморфических процессах. Применяется в электро-и радиотехнике и др.

    Каолинит (фарфоровая глина) - Al 2 (OH) 8 . Встре­чается в виде плотных порошковидных и землистых масс; цвет белый, серовато-белый, желтоватый; твердость 1; излом земли­стый; прилипает к языку; относительная плотность 2,6; образуется при выветривании главным образом полевых шпатов, слюд и содержащих их пород. Применяется на строительстве, при про­изводстве керамики, бурении скважин, для получения алюминия.

    Природные органические соединения. Среди природных органических соединений особая роль отводится 68


    углеводородам. Это твердые, жидкие и газообразные химические соединения углерода (С) и водорода (Н), называемые битумами и получающиеся в результате распада органических веществ.

    К жидким битумам относится нефть. Подробно о нефти ска­зано во втором разделе учебника.

    К твердым битумам относятся асфальты, кериты, антраксолиты и др. Все твердые битумы (за исключением озокерита) являются продуктами изменения тяжелых смолистых нефтей нафтеново-ароматического типа.

    Асфальты (горные смолы). Это хрупкий (иногда вязкий) смо­листый минерал темно-бурого, почти черного цвета; представляет собой смесь окисленных углеводородов с содержанием С от 67 до 88 %, Н от 7 до 10 % и О + N + S от 2 до 23 %; твердость 2; относительная плотность 1,0-1,2; является продуктом измене­ния нефтей с нафтеновым основанием; легкорастворим в скипи­даре, хлороформе и сероуглероде; часто пропитывает пески и известняки, а также встречается в виде жил, заполняет пустоты, образуя озера. Асфальты широко применяются в промышлен­ности.

    Асфальтиты. Так называется группа твердых и более чистых, чем асфальты, ископаемых битумов - альберита, гремита, гра-хемита. Элементарный состав асфальтов и асфальтитов прибли­зительно одинаков; цвет асфальтитов черный; хрупкие; поверх­ность излома блестящая; относительная плотность 1,13-1,20; полностью растворяются в хлороформе; плавятся без видимого разложения.

    Кериты. Твердые, углеводородные битумы, образовавшиеся в результате метаморфизма нефтей; элементарный состав: С (80-90 %), Н (4-10 %), О + N + S (2,5-10 %); твердые, очень хрупкие минералы черного цвета с сильным блеском; в органиче­ских растворителях полностью не растворяются; при нагревании не плавятся, а вспучиваются и разлагаются.

    Антраксолиты. В отличие от рассмотренных выше твердых битумов антраксолиты являются продуктом более высокой сте­пени метаморфизма нефтей. Это черное, хрупкое, блестящее вещество, нерастворимое в органических растворителях; при на­гревании не плавится; элементарный состав: С 90-99 %, Н 0,2- 4 %, О + N + S 0,5-5 %; относительная плотность 1,3-2,0; залегает в виде жил.

    Озокериты (горный воск). Минералы от светло-желтого до черного цвета, с раковистым изломом; относительная плотность 0,85-0,97; температура плавления 52-82 °С. Твердость озокери-тов определяется глубиной проникновения иглы под нагрузкой (пенетрация), она изменяется от 2-8° (царапание ногтем) до 360° (мазеподобен); озокериты горят ярким пламенем. Элементар­ный состав: С 84-86 %, Н 13-15 %, N 0-26 %, S 0 - 0,2 %. В составе озокеритов преобладают твердые парафиновые угле­водороды метанового ряда (С л Н. г „ +2)-. Хорошо растворимы в бен-


    зине, керосине, нефти, сероуглероде, смолах, хлороформе. Широко используются в электротехнике, парфюмерии, кожевенной и тек­стильной промышленности, а также в медицине.

    Газообразные битумы. Они объединяют природные углеводо­родные газы, среди которых выделяют сухие газы, попутные, газы газоконденсатных и газы каменноугольных месторождений. Подробно рассмотрены во втором разделе учебника.

    Попыткисистематизации минералов на различной основе предпринимались еще в античном мире. Первоначально (от Аристотеля до Ибн Сины и Бируни) минералы систематизировались по внешним признакам. Со 2-ой половины XIX в. исключительное распространение получили химические классификации, а в ХХ в. – кристаллохимические. В настоящее время наиболее распространена классификация минералов, в основу которой положен химический принцип (химический состав, тип химических соединений, характер химической связи). Более мелкие таксоны внутри классов выделяют с учетом структурных особенностей минералов (таблица 1.1).

    Краткая характеристика классов минералов

    Самородные элементы . В самородном состоянии в природе известно около 40 химических элементов, но большинство из них встречаются очень редко. Нахождение элементов в самородном виде связано со строением их атомов, имеющих устойчивые электронные оболочки. Химически инертные в природных условиях элементы называются благородными.

    В виде самородных металлов встречаются Au, Pt, Ag, Cu, Fe, Pb, Sn, Hg, Zn, Al, типичны в природном состоянии и сплавы нескольких металлов, например (Pt+Fe), (Pt+Fe+Ni), (Au+Ag) и др. Из самородных полуметаллов наиболее распространены As, Sb, Se, Te, из неметаллов – различные модификации С (графит, алмаз) и S. Графит и сера часто образуют крупные месторождения.

    Халькогениды (сернистые соединения ) представляют собой соединения катионов с серой (сульфиды). В природе известно около 200 сернистых соединений, но только 20 из них встречаются в значительных количествах. Наиболее распространены соединения с Fe, Cu, Pb, Zn, Sb, Hg.

    Цвет сульфидов разнообразный (свинцово-серый, черный, латунно-желтый, медно-желтый, оранжевый, желтый, красный). Твердость варьирует от 1 до 6-6,5, плотность меняется от средней до высокой.

    Основная масса сульфидов образуется гидротермальным путем, известны также сульфиды магматического и метаморфического генезиса, некоторые являются результатом экзогенных процессов.

    Сульфиды – важные рудные минералы, сырье для получения цветных, тяжелых и некоторых редких и рассеянных металлов, их сплавов.

    Таблица 1.1

    Классификация минералов

    Основные типы минералов

    Классы

    Подклассы

    Группы

    I.Простые

    вещества

    1.Самородные элементы

    1.Самородные металлы

    2.Самородные неметаллы

    3.Самородные полуметаллы

    Гр. платины, гр. меди

    Гр. серы, гр. графита

    Гр. мышьяка

    II.Халькогениды сернистые соединения)

    1.Сульфиды

    1.Простые сульфиды

    2.Сложные сульфиды

    Гр. пирита

    Гр. халькопирита

    III.Кислород-ные соединения

    1.Оксиды и гидрооксиды

    1.Сульфаты

    2.Фосфаты

    3.Карбонаты

    4.Силикаты

    1.Простые ок-сиды и гидрооксиды

    2.Сложные оксиды

    1.Островные

    2.Цепочечные

    3.Ленточные

    4.Листовые

    5.Каркасные

    Гр. гематита, гр. корунда, гр. кварца

    Гр. магнетита

    Гр. гипса, гр. ангидрита, гр. барита

    Гр. апатита

    Гр. кальцита, гр. доломита

    Гр. оливина

    Гр. пироксенов

    Гр. амфиболов

    Гр. слюд, гр. талька, гр. глин, гр. хлорита, гр. серпентина

    Гр. полевых шпатов, гр. фельдшпатоидов

    IV.Галогениды (галоидные соединения)

    1.Хлориды

    2.Фториды

    Гр. галита

    Гр. флюорита

    Кислородные соединения. Оксиды и гидрооксиды – соединения элементов с кислородом, в гидрооксидах присутствует также вода. В земной коре на долю этих минералов приходится около 17%, из них на долю кремнезема (SiO 2) – 12,6%, на долю оксидов и гидрооксидов Fe – 3,9%. К числу распространенных минералов относятся также окислы и гидроокислы алюминия, марганца и окислы титана.

    Физические свойства этих минералов различны, для большинства из них характерна высокая твердость. Происхождение магматическое, пегматитовое, гидротермальное, но большинство окислов образуется в результате экзогенных процессов в верхних частях литосферы. Многие эндогенные минералы при выветривании разрушаются и переходят в окислы и гидроокислы, как более устойчивые соединения в условиях поверхности. Будучи физически и химически устойчивыми, многие окислы накапливаются в россыпях.

    Сульфаты – природные соли серной кислоты. В природе известно около 190 минеральных видов, которые представляют собой простые безводные соли или сложные соли с конституционной и кристаллизационной водой. Основная структурная единица – анионный радикал 2 , среди катионов видообразующими являются Ca 2+ , Ba 2+ , Mg 2+ и др.

    Цвет сульфатов обусловлен примесями ионов-хромофоров и наличием структурных дефектов. Характерны низкая твердость (2-3,5), хорошая растворимость в воде.

    Сульфаты формируются в окислительных условиях на участках распространения сульфидных месторождений, в корах выветривания, а также как хемогенные отложения содовых, сульфатных, соляных озер и крупных водных бассейнов. Эндогенные сульфаты типичны для средне- и низкотемпературных гидротермальных жил, реже отмечаются как продукты вулканической деятельности.

    Фосфаты – соли ортофосфорной кислоты. В природе известно свыше 230 простых и сложных, водных и безводных соединений. Основная структурная единица – анионный радикал 3- ; среди катионов видообразующими являются Ca 2+ , Fe 2+ , Fe 3+ , Mg 2+ ,TR 3+ и др. Встречаются фосфаты в виде листовато-уплощенных и таблитчатых кристаллов или в виде чешуйчатых агрегатов. Характерные свойства: бесцветны или интенсивно окрашены в синий цвет различных оттенков; люминесценция; твердость – 3-5, плотность – 1,6-7,0 г/см 3 . Происхождение: магматическое, гидротермальное, экзогенное.

    Карбонаты – соли угольной кислоты. Ведущие катионы Ca 2+ , Fe 2+ , Na + , Mg 2+ , Ba 2+ , Cu 2+ , Zn 2+ и др. Это многочисленная группа (около 120 минеральных видов), из которых многие имеют значительное распространение. Встречаются карбонаты в виде хорошо ограненных кристаллов значительных размеров; плотных, зернистых масс, слагающих мощные мономинеральные толщи; радиально-лучистых, игольчатых, натечных, почковидных агрегатов и тонких смесей с другими минералами.

    Большая часть карбонатов белые или бесцветные; окраску карбонатам придают хромофорные ионы типа Fe 2+ , Mn 2+ , TR 3+ , Cu 2+ и тонкодисперсные механические примеси (гематит, битум и т.д.). Твердость около 3-4,5, плотность невелика, за исключением карбонатов Zn, Pb, Ba.

    Важным диагностическим признаком является действие на карбонаты кислот (HCl, HNO 3), от которых они в той или иной степени вскипают с выделением углекислого газа.

    По происхождению карбонаты осадочные (биохимические или химические осадки), осадочно-метаморфические; поверхностные, характерные для зоны окисления; низко- и среднетемпературные гидротермальные; метасоматические. Иногда они кристаллизуются из кальцитовых и содовых вулканических лав магматического происхождения.

    Карбонаты – важнейшие неметаллические полезные ископаемые, а также ценные руды на Zn, Pb, Fe, Cu и др. металлы. Известняки, доломиты, мраморы – почти мономинеральные горные породы, сложенные карбонатами.

    Силикаты – соли кремниевой кислоты. На долю силикатов приходится до 75% массы земной коры и около 25% минеральных видов. В природе известно свыше 700 природных силикатов, включая важнейшие породообразующие минералы (полевые шпаты, пироксены, амфиболы, слюды и др.).

    Основная структурная единица – одиночные изолированные тетраэдрические радикалы 4- . Ведущие катионы Na + , Mg 2+ , Al 3+ , Ca 2+ , Fe 2,3+ , К + , Мn 2+ .

    Структурное разнообразие силикатов определяется строением кремнекислородных радикалов. Различают силикаты с островными, цепочечными, ленточными, листовыми, каркасными радикалами.

    Островные силикаты, т.е. силикаты с изолированными тетраэдрами 4- и изолированными группами тетраэдров. В силикатах с изолированными тетраэдрами 4- каждый из четырех кислородов имеет одну свободную валентность. Между собой тетраэдры непосредственно не связаны, связь происходит через катионы Mg, Fe, Al, Zr и др. Силикаты с островной структурой имеют изометрический облик и характеризуются повышенной твердостью и плотностью (оливин).

    Цепочечные силикаты характеризуются структурой, в которой тетраэдры сочленяются в виде непрерывных обособленных цепочек. Радикалы 4- , 6- , катионы Ca 2+ , Mg 2+ , Fe 3+ , Al 3+ , Na + (пироксены).

    Ленточные силикаты имеют тетраэдры в виде сдвоенных цепочек, лент, поясов. Радикал 6- , катионы Ca 2+ , Mg 2+ , Fe 3+ , Al 3+ , Na + , (амфиболы). Часто содержат ионы (OH) ‾ 2.

    Силикаты цепочечной и ленточной структур обычно вытянуты, для них характерны призматические и столбчатые кристаллы, игольчатые и волокнистые агрегаты.

    Листовые силикаты – силикаты с непрерывными слоями кремнекислородных тетраэдров. Радикал такой структуры 2- . Слои тетраэдров обособлены друг от друга и связаны катионами Mg 2+ , Fe 3+ , Al 3+ , Ni + и др. Содержат ионы (OH) 2 , (OH, F) 2 (тальк, серпентин, глинистые минералы, слюды, хлориты).

    Листовые силикаты характеризуются весьма совершенной спайностью и листоватым обликом минералов. Это объясняется тем, что сами слои кремнекислородных тетраэдров являются очень прочными, а связь между ними, осуществляемая через катионы, менее прочная.

    Каркасные силикаты – силикаты с непрерывными трехмерными каркасами из алюмо- и кремнекислородных тетраэдров. В этом случае все кислороды у тетраэдров являются общими, их валентности использованы на связь с катионами, каркас нейтрален. Радикал такого каркаса 0 . Именно такой каркас отвечает структуре кварца (кварц по этой причине можно относить к силикатам с каркасной структурой).

    Алюмокислородные радикалы m- образуются в результате замещения четырехвалентного кремния трехвалентным алюминием, что вызывает появление одной свободной валентности и влечет за собой необходимость вхождения других катионов. Видообразующими катионами силикатов являются Na + , K + , Ca 2+ (полевые шпаты, фельдшпатиды).

    Большинство силикатов бесцветные или белые. Силикаты Fe, Mn, Ni, Zr и др. элементов окрашены в различные цвета. Блеск стеклянный до алмазного. Спайность совершенная по двум-трем направлениям, весьма совершенная, плотность от 2,0 до 6,5 г/см 3 , твердость 1-8.

    Силикаты – полигенные минералы. Они кристаллизуются из магмы, образуются в процессе метаморфизма, типичны для зон окисления рудных месторождений.

    Галогениды (галоидные соединения ). Хлориды – соли соляной кислоты. Известно порядка 100 минеральных видов. Собственная окраска хлоридов белая; чистые кристаллы бесцветны и прозрачны. Желтые, бурые, серые, красные и др. цвета галоидным соединениям придают механические примеси: гидроокислы железа, органические вещества и др. Хлориды имеют невысокую твердость – 1,0-3,5; плотность варьирует от 1,5-2,5 до 6,5-8,3 г/см 3 , хорошо растворяются в воде, гигроскопичны.

    Образуются хлориды преимущественно хемогенно-осадочным путем – при испарении воды соляных и содовых озер или морских бассейнов и лагун.

    Фториды – природные соединения элементов Na, K, Ca, Mg и др. элементов с фтором. Известно до 59 минеральных видов, большая часть из которых распространена ограничено. Наиболее ценным минералом является флюорит, встречающийся в месторождениях гидротермального, пневматолитового и грейзенового типов.

    В таблице 1.2 приведена характеристика основных породообразующих минералов и минералов, наиболее широко распространенных в природе и имеющих практическую ценность.

    Вопросы для самопроверки

      Дайте определение понятию минерал.

      Какое состояние могут иметь минералы в природных условиях?

      Чем отличаются минералы с кристаллическим и аморфным строением?

      Что называется минеральным агрегатом? Какие бывают агрегаты?

      Перечислите важнейшие физические свойства минералов.

      Что такое спайность? Ее причины.

      Какие методы существуют для определения твердости?

      Назовите минералы шкалы твердости Мооса.

      Каким бывает излом минералов?

      Каковы причины окраски минералов?

      Что такое побежалость? Для каких минералов она характерна?

      Как отличаются минералы по блеску?

      Как определяются магнитные свойства минералов?

      По каким признакам можно систематизировать минералы? Какой признак для классификации минералов является наиболее научно обоснованным?

      Какие процессы минералообразования относятся эндогенным и какие к экзогенным?

    Задание:

      Используя табл. 1.2, бисквиты, стекла, реактивы и пр. определить образцы из коллекции, предоставленной преподавателем.