Что представляет собой кристалл. Природные кристаллы - разновидности, свойства, добыча и применение. Выращивание кристалла в домашних условиях

Содержание статьи

КРИСТАЛЛЫ – вещества, в которых мельчайшие частицы (атомы, ионы или молекулы) «упакованы» в определенном порядке. В результате при росте кристаллов на их поверхности самопроизвольно возникают плоские грани, а сами кристаллы принимают разнообразную геометрическую форму. Каждый, кто побывал в музее минералогии или на выставке минералов, не мог не восхититься изяществом и красотой форм, которые принимают «неживые» вещества.

А кто не любовался снежинками, разнообразие которых поистине бесконечно! Еще в 17 в. знаменитый астроном Иоганн Кеплер написал трактат О шестиугольных снежинках, а спустя три столетия были изданы альбомы, в которых представлены коллекции увеличенных фотографий тысяч снежинок, причем ни одна из них не повторяет другую.

Интересно происхождения слова «кристалл» (оно звучит почти одинаково во всех европейских языках). Много веков назад среди вечных снегов в Альпах, на территории современной Швейцарии, нашли очень красивые, совершенно бесцветные кристаллы, очень напоминающие чистый лед. Древние натуралисты так их и назвали – «кристаллос», по-гречески – лед; это слово происходит от греческого «криос» – холод, мороз. Полагали, что лед, находясь длительное время в горах, на сильном морозе, окаменевает и теряет способность таять. Один из самых авторитетных античных философов Аристотель писал, что «кристаллос рождается из воды, когда она полностью утрачивает теплоту». Римский поэт Клавдиан в 390 то же самое описал стихами:

Ярой альпийской зимой лед превращается в камень.

Солнце не в силах затем камень такой растопить .

Аналогичный вывод сделали в древности в Китае и Японии – лед и горный хрусталь обозначали там одним и тем же словом. И даже в 19 в. поэты нередко соединяли воедино эти образы:

Едва прозрачный лед, над озером тускнея,

Кристаллом покрывал недвижные струи.

А.С.Пушкин. К Овидию

Особое место среди кристаллов занимают драгоценные камни, которые с древнейших времен привлекают внимание человека. Люди научились получать искусственно очень многие драгоценные камни. Например, подшипники для часов и других точных приборов уже давно делают из искусственных рубинов. Получают искусственно и прекрасные кристаллы, которые в природе вообще не существуют. Например, фианиты – их название происходит от сокращения ФИАН – Физический институт Академии наук, где они впервые были получены. Фианиты – кристаллы кубического оксида циркония ZrO 2 , которые внешне очень похожи на бриллианты.

Строение кристаллов.

В зависимости от строения, кристаллы делятся на ионные, ковалентные, молекулярные и металлические. Ионные кристаллы построены из чередующихся катионов и анионов, которые удерживаются в определенном порядке силами электростатического притяжения и отталкивания. Электростатические силы ненаправленные: каждый ион может удержать вокруг себя столько ионов противоположного знака, сколько помещается. Но при этом силы притяжения и отталкивания должны быть уравновешены и должна сохраняться общая электронейтральность кристалла. Все это с учетом размеров ионов приводит к различным кристаллическим структурам. Так, при взаимодействии ионов Na + (их радиус 0,1 нм) и Cl – (радиус 0,18 нм) возникает октаэдрическая координация: каждый ион удерживает около себя шесть ионов противоположного знака, расположенных по вершинам октаэдра. При этом все катионы и анионы образуют простейшую кубическую кристаллическую решетку, в которой вершины куба попеременно заняты ионами Na + и Cl – . Аналогично устроены кристаллы KCl, BaO, CaO, ряда других веществ.

Ионы Cs + (радиус 0,165 нм) по размерам близки ионам Cl – , и возникает кубическая координация: каждый ион окружен восемью ионами противоположного знака, расположенными в вершинах куба. При этом образуется объемноцентрированная кристаллическая решетка: в центре каждого куба, образованного восемью катионами, расположен один анион, и наоборот. (Интересно, что при 445° С CsCl переходит в простую кубическую решетку типа NaCl.) Более сложно устроены кристаллические решетки CaF 2 (флюорита), многих других ионных соединений. В некоторых ионных кристаллах сложные многоатомные анионы могут соединяться в цепи, слои или образовывать трехмерный каркас, в полостях которого располагаются катионы. Так, например, устроены силикаты. Ионные кристаллы образуют большинство солей неорганических и органических кислот, оксиды, гидроксиды, соли. В ионных кристаллах связи между ионами прочные, поэтому такие кристаллы имеют высокие температуры плавления (801° С для NaCl, 2627° С для СаО).

В ковалентных кристаллах (их еще называют атомными) в узлах кристаллической решетки находятся атомы, одинаковые или разные, которые связаны ковалентными связями. Эти связи прочные и направлены под определенными углами. Типичным примером является алмаз; в его кристалле каждый атом углерода связан с четырьмя другими атомами, находящимися в вершинах тетраэдра. Ковалентные кристаллы образуют бор, кремний, германий, мышьяк, ZnS, SiO 2 , ReO 3 , TiO 2 , CuNCS. Поскольку между полярной ковалентной и ионной связью нет резкой границы, то же справедливо и для ионных и ковалентных кристаллов. Так, заряд на атоме алюминия в Al 2 O 3 равен не +3, а лишь +0,4, что свидетельствует о большом вкладе ковалентной структуры. В то же время в алюминате кобальта CoAl 2 O 4 заряд на атомах алюминия увеличивается до +2,8, что означает преобладание ионных сил. Ковалентные кристаллы, как правило, твердые и тугоплавкие.

Молекулярные кристаллы построены из изолированных молекул, между которыми действуют сравнительно слабые силы притяжения. В результате такие кристаллы имеют намного меньшие температуры плавления и кипения, твердость их низка. Так, кристаллы благородных газов (они построены из изолированных атомов) плавятся уже при очень низких температурах. Из неорганических соединений молекулярные кристаллы образуют многие неметаллы (благородные газы, водород, азот, белый фосфор, кислород, сера, галогены), соединения, молекулы которых образованы только ковалентными связями (H 2 O, HCl, NH 3 , CO 2 и др.). Этот тип кристаллов характерен также почти для всех органических соединений. Прочность молекулярных кристаллов зависит от размеров и сложности молекул. Так, кристаллы гелия (радиус атома 0,12 нм) плавятся при –271,4°С (под давлением 30 атм), а ксенона (радиус 0,22 нм) – при –111,8° С; кристаллы фтора плавятся при –219,6° С, а иода – при +113,6° С; метана СН 4 – при –182,5° С, а триаконтана С 30 Н 62 – при +65,8° С.

Металлические кристаллы образуют чистые металлы и их сплавы. Такие кристаллы можно увидеть на изломе металлов, а также на поверхности оцинкованной жести. Кристаллическая решетка металлов образована катионами, которые связаны подвижными электронами («электронным газом»). Такое строение обусловливает электропроводность, ковкость, высокую отражательную способность (блеск) кристаллов. Структура металлических кристаллов образуется в результате разной упаковки атомов-шаров. Щелочные металлы, хром, молибден, вольфрам и др. образуют объемноцентрированную кубическую решетку; медь, серебро, золото, алюминий, никель и др. – гранецентрированную кубическую решетку (в ней помимо 8 атомов в вершинах куба имеются еще 6, расположенные в центре граней); бериллий, магний, кальций, цинк и др. – так называемую гексагональную плотную решетку (в ней 12 атомов расположены в вершинах прямоугольной шестигранной призмы, 2 атома – в центре двух оснований призмы и еще 3 атома – в вершинах треугольника в центре призмы).

Все кристаллические соединения можно разделить на моно- и поликристаллические. Монокристалл представляет собой монолит с единой ненарушенной кристаллической решеткой. Природные монокристаллы больших размеров встречаются очень редко. Большинство кристаллических тел являются поликристаллическими, то есть состоят из множества мелких кристалликов, иногда видных только при сильном увеличении.

Рост кристаллов.

Многие видные ученые, внесшие большой вклад в развитие химии, минералогии, других наук, начинали свои первые опыты именно с выращивания кристаллов. Помимо чисто внешних эффектов, эти опыты заставляют задумываться на тем, как устроены кристаллы и как они образуются, почему разные вещества дают кристаллы разной формы, а некоторые вовсе не образуют кристаллов, что надо сделать, чтобы кристаллы получились большими и красивыми.

Вот простая модель, поясняющая суть кристаллизации. Представим, что в большом зале укладывают паркет. Легче всего работать с плитками квадратной формы – как ни поверни такую плитку, она все равно подойдет к своему месту, и работа пойдет быстро. Именно поэтому легко кристаллизуются соединения, состоящие из атомов (металлы, благородные газы) или небольших симметричных молекул. Такие соединения, как правило, не образуют некристаллических (аморфных) веществ.

Труднее выложить паркет из прямоугольных дощечек, особенно если у них с боков имеются пазы и выступы – тогда каждую дощечку можно уложить на свое место одним единственным способом. Особенно трудно выложить паркетный узор из дощечек сложной формы.

Если паркетчик очень торопится, то плитки будут поступать к месту укладки слишком быстро. Понятно, что правильного узора теперь не получится: если хотя бы в одном месте плитку перекосит, то дальше все пойдет криво, появятся пустоты (как в старой компьютерной игре «Тетрис», в которой «стакан» заполняется деталями слишком быстро). Ничего хорошего не получится и в том случае, если в большом зале начнут укладывать паркет сразу десяток мастеров – каждый со своего места. Даже если они будут работать не спеша, крайне сомнительно, чтобы соседние участки оказались хорошо состыкованными, и в целом, вид у помещения получится весьма неприглядным: в разных местах плитки расположены в разном направлении, а между отдельными участками ровного паркета зияют дыры.

Примерно те же процессы происходят и при росте кристаллов, только сложность здесь еще и в том, что частички должны укладываться не в плоскости, а в объеме. Но ведь никакого «паркетчика» здесь нет – кто же укладывает частички вещества на свое место? Оказывается, они укладываются сами, потому что непрерывно совершают тепловые движения и «ищут» самое подходящее для себя место, где им будет наиболее «удобно». В данном случае «удобство» подразумевает также и наиболее энергетически выгодное расположение. Попав на такое место на поверхности растущего кристалла, частица вещества может там остаться и через некоторое время оказаться уже внутри кристалла, под новыми наросшими слоями вещества. Но возможно и другое – частица вновь уйдет с поверхности в раствор и снова начнет «искать», где ей удобнее устроиться.

Каждое кристаллическое вещество имеет определенную свойственную ему внешнюю форму кристалла. Например, для хлорида натрия эта форма – куб, для алюмокалиевых квасцов – октаэдр. И даже если сначала такой кристалл имел неправильную форму, он все равно рано или поздно превратится в куб или октаэдр. Более того, если кристалл с правильной формой специально испортить, например, отбить у него вершины, повредить ребра и грани, то при дальнейшем росте такой кристалл начнет самостоятельно «залечивать» свои повреждения. Происходит это потому, что «правильные» грани кристалла растут быстрее, «неправильные» – медленнее. Чтобы убедиться в этом, был проведен такой опыт: из кристалла поваренной соли выточили шар, а потом поместили его в насыщенный раствор NaCl; через некоторое время шар сам постепенно превратился в куб! Рис. 6 Формы кристаллов некоторых минералов

Если процесс кристаллизации идет не слишком быстро, а частицы обладают удобной для укладки формой и высокой подвижностью, они легко находят свое место. Если же резко снизить подвижность частиц с низкой симметрией, то они «застывают» как попало, образуя прозрачную массу, похожую на стекло. Такое состояние вещества так и называют – стеклообразным. Примером может служить обычное оконное стекло. Если стекло долго держать сильно нагретым, когда частицы в нем достаточно подвижны, в нем начнут расти кристаллы силикатов. Такое стекло теряет прозрачность. Стеклообразными могут быть не только силикаты. Так, при медленном охлаждении этилового спирта он кристаллизуется при температуре –113,3° С, образуя белую снегообразную массу. Но если охлаждение вести очень быстро (опустить тонкую ампулу со спиртом в жидкий азот с температурой –196° С), спирт застынет так быстро, что его молекулы не успеют построить правильный кристалл. В результате получится прозрачное стекло. То же происходит и с силикатным стеклом (например, оконным). При очень быстром охлаждении (миллионы градусов в секунду) даже металлы можно получить в некристаллическом стеклообразном состоянии.

Трудно кристаллизуются вещества с «неудобной» формой молекул. К таким веществам относятся, например, белки и другие биополимеры. Но и обычный глицерин, который имеет температуру плавления +18° С, при охлаждении легко переохлаждается, постепенно застывая в стеклообразную массу. Дело в том, что уже при комнатной температуре глицерин очень вязкий, а при охлаждении становится совсем густым. При этом несимметричным молекулам глицерина очень трудно выстроиться в строгом порядке и образовать кристаллическую решетку.

Способы выращивания кристаллов.

Кристаллизацию можно вести разными способами. Один из них – охлаждение насыщенного горячего раствора. При каждой температуре в данном количестве растворителя (например, в воде) может раствориться не более определенного количества вещества. Например, в 100 г воды при 90° С может раствориться 200 г алюмокалиевых квасцов. Такой раствор называется насыщенным. Будем теперь охлаждать раствор. С понижением температуры растворимость большинства веществ уменьшается. Так, при 80° С в 100 г воды можно растворить уже не более 130 г квасцов. Куда же денутся остальные 70 г? Если охлаждение вести быстро, избыток вещество просто выпадет в осадок. Если этот осадок высушить и рассмотреть в сильную лупу, то можно увидеть множество мелких кристалликов.

При охлаждении раствора частички вещества (молекулы, ионы), которые уже не могут находиться в растворенном состоянии, слипаются друг с другом, образуя крошечные кристаллы-зародыши. Образованию зародышей способствуют примеси в растворе, например пыль, мельчайшие неровности на стенках сосуда (химики иногда специально трут стеклянной палочкой по внутренним стенкам стакана, чтобы помочь кристаллизации вещества). Если раствор охлаждать медленно, зародышей образуется немного, и, обрастая постепенно со всех сторон, они превращаются в красивые кристаллики правильной формы. При быстром же охлаждении образуется много зародышей, причем частички из раствора будут «сыпаться» на поверхность растущих кристалликов, как горох из порванного мешка; конечно, правильных кристаллов при этом не получится, потому что находящиеся в растворе частицы могут просто не успеть «устроиться» на поверхности кристалла на положенное им место. Кроме того, множество быстро растущих кристалликов так же мешают друг другу, как несколько паркетчиков, работающих в одной комнате. Посторонние твердые примеси в растворе также могут играть роль центров кристаллизации, поэтому чем чище раствор, тем больше шансов, что центров кристаллизации будет немного.

Охладив насыщенный при 90° С раствор квасцов до комнатной температуры, мы получим в осадке уже 190 г, потому что при 20° С в 100 г воды растворяется только 10 г квасцов. Получится ли при этом один большой кристалл правильной формы массой 190 г? К сожалению, нет: даже в очень чистом растворе вряд ли начнет расти один-единственный кристалл: масса кристалликов может образоваться на поверхности остывающего раствора, где температура немного ниже, чем в объеме, а также на стенках и дне сосуда.

Метод выращивания кристаллов путем постепенного охлаждения насыщенного раствора неприменим к веществам, растворимость которых мало зависит от температуры. К таким веществам относятся, например, хлориды натрия и алюминия, ацетат кальция.

Другой метод получения кристаллов – постепенное удаление воды из насыщенного раствора. «Лишнее» вещество при этом кристаллизуется. И в этом случае чем медленнее испаряется вода, тем лучше получаются кристаллы.

Третий способ – выращивание кристаллов из расплавленных веществ при медленном охлаждении жидкости. При использовании всех способов наилучшие результаты получаются, если используется затравка – небольшой кристалл правильной формы, который помещают в раствор или расплав. Таким способом получают, например, кристаллы рубина. Выращивание кристаллов драгоценных камней проводят очень медленно, иногда годами. Если же ускорить кристаллизацию, то вместо одного кристалла получится масса мелких.

Кристаллы могут также расти при конденсации паров – так получаются снежинки и узоры на холодном стекле. При вытеснении металлов из растворов их солей с помощью более активных металлов также образуются кристаллы. Например, если в раствор медного купороса опустить железный гвоздь, он покроется красным слоем меди. Но образовавшиеся кристаллы меди настолько мелкие, что их можно разглядеть только под микроскопом. На поверхности гвоздя медь выделяется очень быстро, поэтому и кристаллы ее слишком мелкие. Но если процесс замедлить, кристаллы получатся большими. Для этого медный купорос надо засыпать толстым слоем поваренной соли, положить на него кружок фильтровальной бумаги, а сверху – железную пластинку диаметром чуть поменьше. Осталось налить в сосуд насыщенный раствор поваренной соли. Медный купорос начнет медленно растворяться в рассоле (растворимость в нем меньше, чем в чистой воде). Ионы меди (в виде комплексных анионов CuCl 4 2– зеленого цвета) будут очень медленно, в течение многих дней, диффундировать вверх; за процессом можно наблюдать по движению окрашенной границы.

Достигнув железной пластинки, ионы меди восстанавливаются до нейтральных атомов. Но так как процесс этот происходит очень медленно, атомы меди выстраиваются в красивые блестящие кристаллы металлической меди. Иногда эти кристаллы образуют разветвления – дендриты. Меняя условия опыта (температура, размер кристаллов купороса, толщина слоя соли и т.п.), можно менять условия кристаллизации меди.

Переохлажденные растворы.

Иногда насыщенный раствор при охлаждении не кристаллизуется. Такой раствор, который содержит в определенном количестве растворителя больше растворенного вещества, чем это «положено» при данной температуре, называется пересыщенным раствором. Пересыщенный раствор невозможно получить даже очень длительным перемешиванием кристаллов с растворителем, он может образоваться только путем охлаждения горячего насыщенного раствора. Поэтому такие растворы называют также переохлажденными. В них что-то мешает началу кристаллизации, например, раствор слишком вязкий или для роста кристаллов требуются большие зародыши, которых в растворе нет.

Легко переохлаждаются растворы тиосульфата натрия Na 2 S 2 O 3 . 5H 2 O. Если осторожно нагреть кристаллы этого вещества примерно до 56° С, они «расплавятся». В действительности это не плавление, а растворение тиосульфата натрия в «собственной» кристаллизационной воде. С повышением температуры растворимость тиосульфата натрия, как и большинства других веществ, увеличивается, и при 56° С его кристаллизационной воды оказывается достаточно, чтобы растворить всю имеющуюся соль. Если теперь осторожно, избегая резких толчков, охладить сосуд, кристаллы не образуются и вещество останется жидким. Но если в переохлажденный раствор внести готовый зародыш – маленький кристаллик этого же вещества, то начнется быстрая кристаллизация. Интересно, что ее вызывает кристалл только этого вещества, а к постороннему раствор может быть совершенно безразличен. Поэтому если прикоснуться небольшим кристалликом тиосульфата к поверхности раствора, произойдет настоящее чудо: от кристаллика побежит фронт кристаллизации, который быстро дойдет до дна сосуда. Так что уже через несколько секунд жидкость полностью «затвердеет». Сосуд можно даже перевернуть – из него не выльется ни одной капли! Твердый тиосульфат можно снова расплавить в горячей воде и повторить все сначала.

Если пробирку с переохлажденным раствором тиосульфата поставить в ледяную воду, кристаллы будут расти медленнее, а сами будут крупнее. Кристаллизация пересыщенного раствора сопровождается его нагреванием – это выделяется тепловая энергия, полученная кристаллогидратом при его плавлении.

Тиосульфат натрия – не единственное вещество, образующее переохлажденный раствор, в котором можно вызвать быструю кристаллизацию. Подобным свойством обладает, например, и ацетат натрия CH 3 COONa (его легко получить действием уксусной кислоты на соду). С ацетатом натрия опытные лекторы демонстрируют такое «чудо»: на небольшую горку ацетата в блюдце они медленно льют пересыщенный раствор этой соли, который, соприкасаясь с кристаллами, немедленно кристаллизуется, образуя столбик твердой соли!

Кристаллы широко применяются в науке и технике: полупроводники, призмы и линзы для оптических приборов, твердотельные лазеры, пьезоэлектрики, сегнетоэлектрики, оптические и электрооптические кристаллы, ферромагнетики и ферриты, монокристаллы металлов высокой чистоты...

Рентгеноструктурные исследования кристаллов позволили установить строение многих молекул, в том числе и биологически активных – белков, нуклеиновых кислот.

Ограненные кристаллы драгоценных камней, в том числе выращенных искусственно, используются как украшения.

Илья Леенсон

Твердые тела разделяют на аморфные тела и кристаллы. Отличие вторых от первых состоит в том, что атомы кристаллов располагаются согласно некоторому закону, образуя тем самым трехмерную периодическую укладку, что называется - кристаллическая решетка.

Примечательно, что название кристаллов происходит от греческих слов «застывать» и «холод», и во времена Гомера этим словом называли горный хрусталь, который тогда считался «застывшим льдом». Сперва данным термином называли лишь ограненные прозрачные образования. Но позже, кристаллами стали звать также непрозрачные и не ограненные тела природного происхождения.

Кристаллическая структура и решетка

Идеальный кристалл представляется в виде периодически повторяющихся одинаковых структур - так называемых элементарных ячеек кристалла. В общем случае, форма такой ячейки - косоугольный параллелепипед.

Следует различать такие понятия как кристаллическая решетка и кристаллическая структура. Первая - это математическая абстракция, изображающая регулярное расположение неких точек в пространстве. В то время как кристаллическая структура - это реальный физический объект, кристалл, в котором с каждой точкой кристаллической решетки связана определенная группа атомов или молекул.

Кристаллическая структура граната — ромб и додекаэдр

Основным фактором, определяющим электромагнитные и механические свойства кристалла, является строение элементарной ячейки и атомов (молекул), связанных с ней.

Анизотропия кристаллов

Главное свойство кристаллов, отличающее их от аморфных тел - это анизотропия. Это означает, что свойства кристалла различны, в зависимости от направления. Так, например, неупругая (необратимая) деформация осуществляется лишь по определенным плоскостям кристалла, и в определенном направлении. В связи с анизотропией кристаллы по-разному реагируют на деформацию в зависимости от ее направления.

Однако, существуют кристаллы, которые не обладают анизотропией.

Виды кристаллов

Кристаллы разделяют на монокристаллы и поликристаллы. Монокристаллами называют вещества, кристаллическая структура которых распространяется на все тело. Такие тела являются однородными и имеют непрерывную кристаллическую решетку. Обычно, такой кристалл обладает ярко выраженной огранкой. Примерами природного монокристалла являются монокристаллы каменной соли, алмаза и топаза, а также кварца.

Немало веществ имеют кристаллическую структуру, хотя обычно не имеют характерной для кристаллов формы. К таким веществам относятся, например, металлы. Исследования показывают, что такие вещества состоят из большого количества очень маленьких монокристаллов — кристаллических зерен или кристаллитов. Вещество, состоящее из множества таких разноориентированных монокристаллов, называется поликристаллическим. Поликристаллы зачастую не имеют огранки, а их свойства зависят от среднего размера кристаллических зерен, их взаимного расположения, а также строения межзеренных границу. К поликристаллам относятся такие вещества как металлы и сплавы, керамики и минералы, а также другие.

Муниципальное общеобразовательное учреждение лицей № 6

Ворошиловского района

Городской конкурс учебно-

исследовательских работ

«Я и Земля» им. В. И.

Вернадского

Кристаллы знакомые и загадочные.

Секция физики

Выполнили: Берко Мария,

Нефёдова Ирина,

Волгоград

Введение…………………………………………………………………………..3

Основная часть

История возникновения кристаллов и Кристаллография……………………..5

Что же такое кристаллы………………………………………………………….7

Кристаллическое состояние кристаллов…………………………………….....13

Кристаллографические системы…………………………………………..........26

Применение кристаллов…………………………………………………………27

Экспериментальная часть

Выращивание кристалла из медного купороса и алюмокалиевых квасцов…29

Заключение

Актуальность. Объект и предмет. Проблема.

При подборе темы мы отталкивались от практической части: «Выращивание кристаллов». Проанализировав теорию опыта, мы заинтересовались выбранной нами темой и решили более подробно узнать о кристаллах и о его применении в современном мире.

Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями. Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни , многие суеверия сохранились в талисманах «на счастье» и «своих камнях», соответствующих месяцу рождения. Все природные драгоценные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов. Украшения из кристаллов сейчас столь же популярны, как и во время неолита. Сегодня же кристаллы, помимо их свойства соблазна, нашли очень большое применение в науке и технике: полупроводники, призмы и линзы для оптических приборов, твердотельные лазеры, пьезоэлектрики, сегнетоэлектрики, оптические и электрооптические кристаллы, ферромагнетики и ферриты, монокристаллы металлов высокой чистоты.

Многие ученые, внесшие большой вклад в развитие химии и минералогии, начинали свои первые опыты с выращивания кристаллов, пытаясь понять, как они образуются.

И мы решили начать свою исследовательскую работу, поставив цель: получить кристаллы различных веществ в домашних условиях.

Цели исследования

1) Вырастить кристаллы правильной формы в домашних условиях

Задачи исследования

1) Познакомиться с историей открытия кристаллов

2) Понять необходимость применения кристаллов в современном мире

3) Исследовать свойства и структуру кристаллов

4) Выяснить где находят широкое применение кристаллы

5) Сделать выводы на основании проведенной работы.

Промышленные проблемы

1) Кристаллы долго растут

2) Некоторые кристаллы являются дорогими для производства (алмаз, рубин)

3) Сложно вырастить кристалл правильной формы

Методы исследования

1) Поисковый метод

2) Экспериментальный метод

1. История возникновения кристаллов.

Кристаллография.

Кристаллом (от греч. krystallos – «прозрачный лед») вначале называли прозрачный кварц (горный хрусталь), встречавшийся в Альпах. Горный хрусталь принимали за лед, затвердевший от холода до такой степени, что он уже не плавится. Первоначально главную особенность кристалла видели в его прозрачности, и это слово употребляли в применении ко всем прозрачным природным твердым телам. Позднее стали изготавливать стекло, не уступавшее в блеске и прозрачности природным веществам. Предметы из такого стекла тоже называли «кристальными». Еще и сегодня стекло особой прозрачности называется хрустальным, «магический» шар гадалок – хрустальным шаром.

Удивительной особенностью горного хрусталя и многих других прозрачных минералов являются их гладкие плоские грани. В конце 17 в. было подмечено, что имеется определенная симметрия в их расположении. Было установлено также, что некоторые непрозрачные минералы также имеют естественную правильную огранку и что форма огранки характерна для того или иного минерала. Возникла догадка, что форма может быть связана с внутренним строением. В конце концов, кристаллами стали называть все твердые вещества, имеющие природную плоскую огранку.

Заметной вехой в истории кристаллографии явилась книга, написанная в 1784 французским аббатом Р. Гаюи. Он выдвинул предположение, что кристаллы возникают в результате правильной укладки крохотных одинаковых частиц, которые он назвал «молекулярными блоками». Гаюи показал, каким образом можно получить гладкие плоские грани кальцита, укладывая такие «кирпичики». Различия в форме разных веществ он объяснил разницей, как в форме «кирпичиков», так и в способе их укладки.

Со времен Гаюи было принято как гипотеза, что в правильной форме кристалла находит отражение, упорядоченное внутреннее расположение частиц, но это было подтверждено лишь в 1912, когда М. фон Лауэ в Мюнхене установил, что рентгеновские лучи дифрагируют на атомных плоскостях внутри кристалла. Падая на фотографическую пластинку, дифрагированные лучи создают на ней геометрический узор из темных пятен. По положению и интенсивности таких пятен можно рассчитать размеры структурной единицы и определить расположение атомов в ней.

Имея в виду возможность прямого исследования внутренней структуры, многие занимающиеся кристаллографией стали употреблять термин «кристалл» в применении ко всем твердым веществам с упорядоченной внутренней структурой. Нужны лишь благоприятные условия, полагали они, чтобы внутренняя упорядоченность проявилась в виде правильной наружной огранки. Некоторые ученые предпочитают называть твердые вещества с внешне не проявляющейся внутренней упорядоченностью «кристаллическими», а под «кристаллами» понимать, как это было когда-то, твердые вещества с природной огранкой.

1.1 Оптическая кристаллография.

Большое значение в описании и идентификации кристаллов имеют их оптические свойства. Когда свет падает на прозрачный кристалл, он частично отражается, а частично проходит внутрь кристалла. Свет, отражающийся от кристалла, придает ему блеск и цвет, а свет, проходящий внутрь кристалла, создает эффекты, которые определяются его оптическими свойствами

2. Что же такое кристаллы?

Кристаллы - твёрдые тела, имеющие естественную форму правильных многогранников. Правильная форма кристаллов является следствием упорядоченного расположения частиц, из которых они состоят: атомов, молекул, ионов. Эти частицы выстраиваются в строгом порядке “как солдаты в строю” (в отличие от частиц в газах, жидкостях и в аморфных твёрдых телах). От порядка расположения частиц зависит форма кристалла: куб, призма, октаэдр или другой многогранник.

Рис. 1 формы кристаллов

Одиночные крупные кристаллы встречаются редко. Большинство веществ, имеющих кристаллическое строение, образует много маленьких хаотически расположенных сросшихся кристалликов, иногда различимых только в микроскоп, и называются они тогда поликристаллами (металлы, сплавы, многие горные породы).

Физические свойства одиночных кристаллов (монокристаллов) - такие как теплопроводность, электропроводность , упругость, прочность - отличаются по разным направлениям (в отличие от поликристаллических и аморфных тел).

Природные минералы обычно описывают следующими свойствами: химическая формула и класс, цвет, тип кристаллической решётки или сингония, твёрдость, блеск, плотность, цвет черты.

Твёрдость измеряется по десятибалльной шкале Мооса. Самой низкой твёрдостью, принятой за единицу, обладает минерал тальк. Самая большая твёрдость у алмаза, она равна 10. Если царапать друг о друга два минерала, то более твёрдый оставляет царапину на менее твёрдом - так сравнивают минералы по твёрдости. (Твёрдость человеческого ногтя равна 2 - 2,5, поэтому можно быстро определить, больше или меньше “двух” твёрдость данного материала или минерала.)

Блеск минерала бывает металлическим, металловидным, стеклянным, алмазным, матовым, восковым, перламутровым, шелковистым, смолистым или жирным.

Цвет черты определяют, проводя минералом по фарфоровой шероховатой пластинке (её называют бисквитом). Минералы описывают и другими свойствами: прозрачность, излом, спайность, магнетизм, показатель преломления.

· Электроэнергетика, электротехника" href="/text/category/yelektroyenergetika__yelektrotehnika/" rel="bookmark">электротехнике .

· Пирит - серный колчедан

· Формула: FeS2

· Класс: сульфиды

· Цвет: светло-золотистый

· Сингония: кубическая

· Твёрдость: 6-6,5

· Плотность (г/см3): 4,95-5,10

· Блеск: металлический рис. 3 Пирит

· Цвет черты: зеленовато-чёрный, коричнево-чёрный

Название минерала происходит от греческого слова “огнеподобный” из-за способности высекать искры при ударе. Ещё его называют “золотом для дураков” из-за похожести на золото. В древней Индии кристаллы пирита носили при себе в качестве амулета, чтобы оградить себя от нападения от крокодила.

· Арагонит - карбонат кальция, твёрдая разновидность кальцита

· Формула: CaCO3

· Класс: карбонаты

· Цвет: белый, серый, бледно - жёлтый, зелёный, синий, фиолетовый, чёрный

· https://pandia.ru/text/78/007/images/image005_49.jpg" alt="Исландский шпат" align="left" width="216" height="168 ">

В 1669 году профессор Копенгагенского Бартолин обнаружил, что луч света, падающий перпендикулярно на поверхность кристалла исландского шпата, разделяется на два луча: один луч продолжает путь без изменения направления и называется обыкновенным, а другой отклоняется, нарушая обычный закон преломления света, и называется необыкновенным. Если положить кристалл исландского шпата на бумагу с рисунком или текстом, то мы увидим раздвоенное изображение. (*Можно сразу расположить на бумажке с текстом). Исландский шпат широко используется в оптическом приборостроении для изготовления поляризационных призм. Крупнейшие в мире месторождения исландского шпата находятся в России в районе Нижней Тунгуски.

Используется как руда для получения ванадия, который необходим для изготовления бронебойной стали.

Кроме представленных выше примеров кристаллов существует большое количество других минералов с видимым кристаллическим строением: кварц, галит, флюорит, турмалин, доломит, цианит, целестит и т. д.

Наряду с кристаллами можно разместить для сравнения минералы аморфного строения, например, янтарь, обсидиан. Если возникнет редкая возможность заиметь тектит, то ей тоже надо воспользоваться. Тектиты остаются самыми загадочными из всех когда-либо найденных на Земле камней, общепринятой гипотезы их происхождения не существует. Одна из гипотез говорит, что они обязаны рождением небесным телам, хотя и состоят из вещества нашей планеты. Миллионы лет назад Земля бомбардировалась крупными метеоритами, астероидами . При столкновении крупного метеорита с поверхностью Земли происходил взрыв, земные породы оплавлялись, разлетаясь в стороны, и образовывались стеклянные обтекаемого вида тела жёлтого, зелёного, чёрного цвета. Но это лишь одна из гипотез, хотя и самая правдоподобная. Есть предположения о кометном происхождении тектитов, о возникновении тектитов при посадках инопланетных кораблей и при столкновении Земли со сгустками сверхплотного нейтронного вещества.

2.1. Искусственные кристаллы.

С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До 20 в. такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры, обладающие свойствами природных камней. Позднее, в конце 1940-х годов были синтезированы изумруды, а в 1955 фирма «Дженерал электрик» и Физический институт АН СССР сообщили об изготовлении искусственных алмазов.

Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, но в принципе лабораторные кристаллы образуются так же, как и в природе – из раствора, расплава или из паров. Так, пьезоэлектрические кристаллы сегнетовой соли выращиваются из водного раствора при атмосферном давлении. Большие кристаллы оптического кварца выращиваются тоже из раствора, но при температурах 350–450°C и давлении 140 МПа. Рубины синтезируют при атмосферном давлении из порошка оксида алюминия , расплавляемого при температуре 2050° C. Кристаллы карбида кремния, применяемые в качестве абразива, получают из паров в электропечи.

3. Кристаллическое состояние.

Атомы, из которых состоят газы, жидкости и твердые вещества, имеют разную степень упорядоченности. В газе атомы и небольшие группы атомов, соединенные в молекулы, находятся в постоянном беспорядочном движении. Если охлаждать газ, то достигается температура, при которой молекулы сближаются друг с другом, насколько это возможно, и образуется жидкость. Но атомы и молекулы жидкости все-таки могут скользить относительно друг друга. При охлаждении некоторых жидкостей, например, воды, достигается температура, при которой молекулы застывают в относительной неподвижности кристаллического состояния. Эта температура, разная для всех жидкостей, называется температурой замерзания. (Вода замерзает при 0° С; при этом молекулы воды упорядоченно соединяются друг с другом, образуя правильную геометрическую фигуру.) У каждой частицы вещества (атома или молекулы), находящегося в кристаллическом состоянии, окружение точно такое же, как и у любой другой частицы того же типа во всем кристалле. Другими словами, ее окружают вполне определенные частицы, находящиеся на вполне определенных расстояниях от нее. Именно это упорядоченное трехмерное расположение характерно для кристаллов и отличает их от других твердых веществ.

3.1. Образование кристаллов.

Вообще говоря, кристаллы образуются тремя путями: из расплава, из раствора и из паров. Примером кристаллизации из расплава может служить образование льда из воды, так как вода, в сущности, не что иное, как расплавленный лед. К кристаллизации из расплава относится и процесс образования вулканических пород. Магма, проникающая в трещины земной коры или вытесняемая в виде лавы на ее поверхность, содержит многие элементы в разупорядоченном состоянии. При охлаждении магмы или лавы атомы и ионы разных элементов притягиваются друг к другу, образуя кристаллы различных минералов. В таких условиях возникает много зародышей кристаллов. Увеличиваясь в размере, они мешают, друг другу расти, а поэтому гладкие наружные грани у них образуются редко.

В природе кристаллы образуются также из растворов, примером чему могут служить сотни миллионов тонн соли, выпавшей из морской воды. Такой процесс можно продемонстрировать в лаборатории с водным раствором хлорида натрия. Если дать воде возможность медленно испаряться, то, в конце концов, раствор станет насыщенным и дальнейшее испарение приведет к выделению соли. Положительно заряженные ионы натрия притягивают отрицательно заряженные ионы хлора, в результате чего образуется зародыш кристалла хлорида натрия, который выделяется из раствора. При дальнейшем испарении другие ионы пристраиваются к образовавшемуся ранее зародышу, и постепенно растет кристалл с характерной внутренней упорядоченностью и гладкими наружными гранями.

Кристаллы образуются также непосредственно из пара или газа. При охлаждении газа электрические силы притяжения объединяют атомы или молекулы в кристаллическое твердое вещество. Так образуются снежинки; воздух, содержащий влагу, охлаждается, и прямо из него вырастают снежинки той или иной формы.

3.2. Формы кристаллов.

Хотя с первого взгляда все грани, определяющие форму кристалла, могут показаться одинаковыми, при тщательном исследовании обнаруживаются небольшие различия. Это могут быть различия в блеске, нерегулярностях роста, дефектах травления или полосчатости. Тем не менее, некоторые грани оказываются совершенно одинаковыми. Такие грани состоят из одинаковых и одинаково расположенных атомов и соответствуют определенной форме кристаллов. Распределение граней разных форм выявляет симметрию, так как все грани одной формы имеют одинаковое отношение к элементу симметрии. Некоторые кристаллы имеют грани только одной формы, а другие – грани многих форм. На рис. 1 показаны три различные формы кубической системы.

https://pandia.ru/text/78/007/images/image008_37.jpg" width="265 height=115" height="115">

Рис. 7. Формы кристаллов кубической системы. а – куб; б – октаэдр; в – додекаэдр; г – комбинация куба, октаэдра и додекаэдра.

3.3 Структура кристалла .

Кристалл представляет собой правильную трехмерную решетку, составленную из атомов или молекул. Структура кристалла – это пространственное расположение его атомов (или молекул). Геометрия такого расположения подобна рисунку на обоях, в которых основной элемент рисунка повторяется многократно. Одинаковые точки можно расположить на плоскости пятью разными способами, допускающими бесконечное повторение. Для пространства же имеется 14 способов расположения одинаковых точек, удовлетворяющих требованию, чтобы у каждой из них было одно и то же окружение. Это пространственные решетки, называемые также решетками Браве по имени французского ученого О. Браве, который в 1848 доказал, что число возможных решеток такого рода равно 14.

Требование того, чтобы каждый узел решетки имел одинаковое атомное окружение, применительно к кристаллам налагает ограничения на сам основной элемент рисунка. При повторении он должен заполнять все пространство, не оставляя пустых узлов. Было установлено, что существует лишь 32 варианта расположения объектов вокруг некоторой точки (например, атомов вокруг узла решетки), удовлетворяющих этому требованию. Это так называемые 32 пространственные группы. В сочетании с 14 пространственными решетками они дают 230 возможных вариантов расположения объектов в пространстве, называемых пространственными группами. Поскольку структура кристалла определяется не только пространственным расположением атомов, но и их типом, число структур очень велико.

Общими для всех кристаллов являются 14 пространственных решеток, наименьшие формообразующие ячейки. Элементарная ячейка любого кристалла подобна одной из них, но ее размеры определяются размерами, числом и расположением атомов. Элементарная ячейка в виде параллелепипеда, вообще говоря, аналогична «кирпичику» Гаюи, т. е. базисному элементу, при повторении которого образуется кристалл. Рентгеновский анализ позволяет с большой точностью определять длину сторон ячейки и углы между сторонами. Элементарные ячейки очень малы и имеют порядок нанометра (10–9 м). Сторона кубической элементарной ячейки хлорида натрия равна 0,56 нм. Таким образом, в крохотной крупинке обычной поваренной соли содержится примерно миллион элементарных ячеек, уложенных одна к другой.

Методом дифракции рентгеновских лучей (рентгенография) можно определить не только абсолютные размеры элементарной ячейки, но также пространственную группу и даже расположение атомов в пространстве, т. е. структуру кристалла. Важную роль в исследовании кристаллических структур сыграли также методы дифракции электронов (электронография), дифракции нейтронов (нейтронография) и инфракрасной спектроскопии.

3.4. Морфология кристаллов.

Кристаллы имеют некую внутреннюю симметрию, которая не обнаруживается в бесформенной крупинке. Симметрия кристаллов получает наружное выражение только тогда, когда они имеют возможность свободно расти без каких-либо помех. Но даже хорошо организованные кристаллы редко имеют совершенную форму, и нет двух кристаллов, которые были бы совершенно одинаковы.

Форма кристалла зависит от многих факторов, один из которых – форма элементарной ячейки. Если такой «кирпичик» повторить одинаковое число раз параллельно каждой из его сторон, то получится кристалл, форма и относительные размеры которого точно такие же, как у элементарной ячейки. Близкая к этому картина характерна для многих кристаллических веществ. Но на форму оказывают влияние и такие факторы, как температура, давление, чистота, концентрация и направление движения раствора. Поэтому кристаллы одного и того же вещества могут обнаруживать большое разнообразие форм. Различие форм связано с тем, как именно укладываются одинаковые «кирпичики».

Аналогия между элементарными ячейками и кирпичами очень полезна. Укладывая кирпичи так, чтобы их соответствующие стороны были параллельны, можно построить стену, длина, высота и толщина которой будут зависеть только от числа кирпичей, уложенных в данном направлении. Если же в определенном порядке удалять кирпичи, то можно получить миниатюрные лестничные марши с наклоном, зависящим от соотношения чисел кирпичей в подступенке и наступи ступеньки лестницы. Если на такую лестницу наложить линейку, то она образует угол, определяемый размерами кирпича и способом укладки. Углы наклона x и y симметричны независимо от относительных длин s и f.

Точно так же и кристалл может принимать ту или иную форму, если в строго определенном порядке пропускаются некоторые ряды или группы элементарных ячеек. Косые грани кристалла подобны лестницам, сложенным из кирпичей, но «кирпичики» здесь столь малы, что грани кристалла, выглядят, как гладкие поверхности. Углы между соответствующими гранями кристалла постоянны, независимо от его размера. Это установил в 1669 датчанин Н. Стено на примере кристаллов кварца. Тем самым он показал, что форма является характеристикой кристаллического вещества. Ныне известно, что форма кристалла зависит от размеров и формы элементарной ячейки, и положение Стено приняло обобщенную форму закона, согласно которому углы между соответствующими гранями кристаллов одного и того же вещества постоянны.

Размеры и форма граней изменяются от кристалла к кристаллу. Тем не менее, имеется некая внешняя симметрия, присущая всем хорошо ограненным кристаллам. Она обнаруживается в повторении углов и похожести граней, одинаковых в смысле внешнего вида, дефектов травления и особенностей роста. Если кристалл имеет почти совершенную форму, то его симметричные грани тоже подобны по размерам и форме.

До появления рентгеновской кристаллографии самым важным делом занимавшихся кристаллографией было измерение углов между гранями кристаллов. Вычерчивая на основе таких угловых измерений грани кристалла в стереографической или гномонической проекции, можно выявить симметричное расположение граней независимо от размера и формы. По такой проекции можно вычислить отношения осей, а затем выполнить чертеж кристалла.

3.5. Показатель преломления.

При переходе наклонного луча света из воздуха в кристалл его скорость распространения уменьшается; падающий луч отклоняется, или преломляется. Чем больше плотность кристалла и чем больше угол падения луча (i), тем больше угол преломления (r). Отношение sin i к sin r есть величина постоянная. Это обычно записывают в виде равенства sin i/sin r = n; константа n называется показателем преломления. Это самая важная из оптических характеристик кристалла, и ее можно очень точно измерить.

С позиций оптики все прозрачные вещества можно разделить на две группы: изотропные и анизотропные. К изотропным относятся кристаллы кубической системы и некристаллические вещества, например, стекло. В изотропных веществах свет распространяется во всех направлениях с одинаковой скоростью, и поэтому такие вещества характеризуются одним показателем преломления. Группу анизотропных веществ составляют кристаллы всех других кристаллографических систем. В веществах этой группы скорость света, а следовательно, и показатель преломления непрерывно изменяются при переходе от одного кристаллографического направления к другому. Когда свет входит в анизотропный кристалл, он разделяется на два луча, колеблющихся под прямым углом друг к другу и распространяющихся с разными скоростями. Такое явление называется двойным лучепреломлением; всякий анизотропный кристалл характеризуется двумя показателями преломления. Для гексагональных и тетрагональных кристаллов указывают максимальный и минимальный, т. е. «главные» показатели преломления. Один из этих главных показателей преломления соответствует лучу света, колеблющемуся параллельно оси c, а с другой – лучу света, колеблющемуся под прямым углом к этой оси. В орторомбических, моноклинных и триклинных кристаллах имеются три главных показателя преломления: максимальный, минимальный и промежуточный, определяемые лучами света, колеблющимися в трех взаимно перпендикулярных направлениях.

Поскольку показатели преломления зависят от химического состава и строения материала, они являются характеристическими величинами для каждого кристаллического твердого вещества, и их измерение служит эффективным методом его идентификации. Пользуясь простым рефрактометром, ювелир или специалист по драгоценным камням может измерить показатель преломления драгоценного камня, не вынимая его из оправы. С помощью поляризационного микроскопа минералог без особого труда определяет тип минерала, измеряя его показатели преломления и другие оптические характеристики на мелких крупинках. Плеохроизм. В анизотропных кристаллах свет, колеблющийся в разных кристаллографических направлениях, может поглощаться по-разному. Одно из возможных следствий такого явления, называемого плеохроизмом, – изменение цвета кристалла при изменении направления колебаний. В других кристаллах свет, колеблющийся в одном кристаллографическом направлении, может распространяться почти без потерь интенсивности, а под прямым углом к нему почти полностью поглощаться. На различиях в поглощении света тонкими ориентированными кристаллами основано действие таких поляризационных светофильтров, как поляроид.

3.6. Элементы симметрии.

Задолго до того, как 32 типа симметричных расположений точечных групп были определены рентгеновскими методами, они были выявлены путем исследования морфологии , т. е. формы и структуры кристаллов. На основании вида и расположения граней, а также углов между ними кристаллы приписывались одному из 32 кристаллографических классов. Поэтому пространственные группы и кристаллографические классы – это как бы синонимы, и существуют три основных элемента симметрии: плоскость, ось и центр.

3.7. Плоскость симметрии.

Многие хорошо известные нам предметы обладают симметрией относительно плоскости. Например, стул или стол можно представить себе разделенными на две одинаковые части. Точно так же плоскость симметрии делит кристалл на две части, каждая из которых является зеркальным отображением другой. (Плоскость симметрии иногда называют плоскостью зеркального отображения.)

3.8. Ось симметрии.

Ось симметрии – это воображаемая прямая, поворотом вокруг которой на часть полного оборота можно привести объект к совпадению с самим собой. В кристаллах возможны только пять видов осевой симметрии: 1-го порядка (эквивалентная отсутствию вращения), 2-го порядка (повторение через 180), 3-го порядка (повторение через 120), 4-го порядка (повторение через 90) и 6-го порядка (повторение через 60).

3.9. Центр симметрии.

Кристалл имеет центр симметрии, если любая прямая, мысленно проведенная через него, на противоположных сторонах поверхности кристалла проходит через одинаковые точки. Таким образом, на противоположных сторонах кристалла находятся одинаковые грани, ребра и углы.

Имеются 32 возможные комбинации плоскостей, осей и центров симметрии в кристаллах; каждой такой комбинацией определяется кристаллографичес-кий класс. Один класс не имеет симметрии; говорят, что он имеет одну ось вращения 1-го порядка.

3.10. Сигнолии.

Кристаллографические классы, или виды симметрии, объединяются в более крупные группировки, называемые системами или сингониями. Таких сингоний семь:

Таблица 1

В каждую сингонию входят кристаллы, у которых отмечается одинаковое расположение кристаллографических осей и одинаковые элементы симметрии.
Сингониеи называется гриппа видов симметрии, обладающих одним или несколькими одинаковыми элементами симметрии и имеющих одинаковое расположение кристаллографических осей.

Кубическая сингония. В этой сингонии кристаллизуются наиболее симметричные кристаллы. В кубической сингонии присутствует более одной оси симметрии выше второго порядка, т. е. L3 или L4 . Кристаллы кубической сингонии обязательно должны иметь четыре оси третьего порядка (4L3) и, кроме того, либо три взаимно перпендикулярные оси четвертого порядка (3L4), либо три оси второго порядка (3L2).
Максимальное количество элементов симметрии в кубической сингонии может быть выражено формулой 3L4 4L36L29PC. Кристаллы кубической сингонии встречаются в виде куба октаэдра, тетраэдра, ромбододекаэдра, пентагон-додекаэдра и др.

Рис. 8 Кристаллы кубической сигнолии:

1- куб (пирит, торианит, галенит, флюорит, перовскит); 2- кубооктаэдр (галенит); 3 – октаэдр (золото, хромит, магнетит, шпинель); 4-ромбододекаэдр (золото, гранат); 5- тетрагон - триоктаэдр (гранат, лейцит); 6 – комбинация двух тетраэдров (сфалерит); 7- пентагон-додекаэдр (пирит, гранат); 8- гексаэдр (алмаз); 9 – двойник прорастания куба (пирит, тюрканит. флюорит)

Сингонии средней категории. Эта группа объединяет кристаллы, обладающие только одной осью симметрии порядка выше второго. К средней категории относятся гексагональная, тетрагональная и тригональная сингонии. Гексагональная сингония характеризуется наличием одной оси симметрии шестого порядка (L6). Максимальное количество элементов симметрии может быть следующим" L56L27PC. Кристаллы гексагональной сингонии образуют приз мы, пирамиды, дипирамиды и др.

https://pandia.ru/text/78/007/images/image011_32.jpg" width="495" height="236 src=">

Рис. 10 Кристаллы тетрагальной сигнолии:

1- тетрагональная дипирамида (анатаз, циркон, ксенотим); 2- анатаз; 3- комбинация тетрагональной призмы с тетрагональной дипирамидой (циркон, брукит); 4- комбинация дипирамиды и двух призм (ксенотим, рутил, циркон);

5- комбинация двух призм с дипирамидой (везувиан, циркон); 6- комбинация двух тетрагональных призм и дипирамиды с пинакоидом (везувиан); 7- комбинация двух призм с двумя дипирамидами (касситерит); 8- двойник касситерита; 9,10- вульфенит, 11- шеелит.

4. Кристаллографические системы.

https://pandia.ru/text/78/007/images/image013_28.jpg" width="524" height="277 src=">

Рис. 11-2 7 разных способов упорядоченного расположения в пространстве одинаковых точек.

На рис. 11 представлены семь базисных ячеек решеток разной формы. Ромбоэдрическая и гексагональная решетки определяются одними и теми же осями. Таким образом, при наличии 32 симметрий точечных групп имеются только шесть основных форм элементарных ячеек. Соответственно форме основной «строительной» единицы 32 кристаллографических класса разделяются на шесть кристаллографических систем. Каждая кристаллографическая система имеет собственную систему координат, которыми определяются элементарная ячейка, а, следовательно, и грани кристалла. На рис. 11 это стороны a, b и c элементарной ячейки. Принято через c обозначать вертикальную сторону, через b – горизонтальную в плоскости чертежа и через a – горизонтальную сторону, перпендикулярную плоскости чертежа. Прямые, на которых лежат эти стороны, служат линиями отсчета и называются кристаллографическими осями. Угол между b и c обозначается a, между a и c – b, а между a и b – g. Названия кристаллографических систем, относительные длины и угловые соотношения между соответствующими кристаллографическими осями таковы:

Триклинная: a № b № c, a № b № g.

Моноклинная: a № b № c, a = g = 90°, b > 90°.

Орторомбическая: a № b № c, a = b = g = 90°.

Тетрагональная: a = b № c, a = b = g = 90°. Поскольку a и b в этой системе равны и равноценны, их обычно обозначают через a1, a2. Сторона c может быть больше либо меньше a.

Гексагональная: a = b № c, a = b = 90°, g = 120°. Элементарная ячейка гексагональных кристаллов обычно рассматривается как тройная и определяется тремя горизонтальными осями a1, a2, a3, составляющими угол 120° друг с другом и 90° с условно вертикальной осью c.

Кубическая (изометрическая): a = b = c, a = b = g = 90°.

На рис. 1 показаны разнообразные формы, которые могут иметь кристаллы, относящиеся к разным кристаллографическим системам.

5. Применение кристаллов.

Большое применительное значение кристаллы нашли в оптике. Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов.

Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.

Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.

Кристаллы используются также в некоторых мазерах для усиления волн СВЧ-диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.

Практическая часть.

Выращивание кристалла из медного купороса и алюмокалиевых квасцов.

Чтобы вырастить кристалл медного купороса, сначала нужно сделать перенасыщенный раствор: размешать в горячей воде такое количество медного купороса, которое потребуется, чтобы больше «не помещалось» этого вещества. Потом через тряпочку, сложенную вдвое, необходимо профильтровать раствор в другую банку. На следующий день на дне банки с раствором образуются маленькие кристаллы вещества – затравки. Нужно выбрать затравку правильной формы и привязать её ниточкой к карандашу. Раствор нужно разогреть и снова добавлять в него, размешивая, медный купорос до тех пор, пока раствор опять не станет насыщенным. Раствор снова нужно профильтровать в чистую банку и повесить туда затравку. До размера спичечного коробка кристалл будет расти приблизительно месяц. Время от времени банку и нитку нужно очищать от других кристалликов и доливать насыщенный раствор. Когда кристалл достигнет больших размеров, его нужно вынуть из банки, отрезать нитку и протереть маслом.

Выращивание больших монокристаллов соединений, растворимых в воде

disc"> Если образовалось множество мелких сросшихся бесформенных кристалликов, как после резкого охлаждения, то количество соли уменьшают и повторяют описанную стадию.

    Если кристаллики не образовались, раствору следует постоять ещё сутки; иначе, следует увеличить количество растворяемого вещества, повторив этап заново.

Эта стадия эксперимента должна обучить экспериментаторов правильно, выращивать затравку, которая далее будет исходным кирпичиком для получения огромной конструкции. Отберем подходящие по структуре кристаллики (с длинной ребра от 0,3 см и более) и будем хранить их отдельно в растворе соли в банке с притёртой пробкой вдали от источников высоких температур и света.

Надо помните: чем меньше выбранная вами затравка, чем она правильнее, тем легче раствору (системе) подстроиться под неё (как перламутру к пещинке, попавшей в мантию моллюска).

III. Выращивание монокристалла:

Снова готовим насыщенный раствор на основе исходного маточного. Для этого готовый раствор ставим на водяную баню и добавляем 0,5 чайной ложки вещества. Чем меньше мы добавим на этом этапе, тем лучше (можно также просто нагреть насыщенный раствор, без добавления вещества). Греем и перемешиваем. Как только вещество растворилось, колбу вынимаем, и раствор переливаем в заранее приготовленный нагретый стакан. Стакан с раствором ставим на выбранное место, и даем 20-30 сек постоять, чтобы жидкость немного успокоилась. Наш раствор неперенасыщенный, поэтому “лишние градусы” могут вызвать растворение затравки, что нам не нужно. Если раствор тёплый, ему дают остыть до 300C или чуть меньше (проверить при отсутствии термометра – легко; температура нашего тела 36,60C, поэтому всё, что кажется теплее – выше её, наоборот - ниже). Следить за остыванием раствора следует очень внимательно, чтобы не допустить её понижения до комнатной (обычно на остывание раствора выделяю около двух часов).

Далее следует сказать, что можно вырастить кристалл и без нити. Всё, что для этого требуется – стакан с плоским дном, так как для этой цели затравку аккуратно укладывают на середину дна (можно помочь ей лечь нагретой стеклянной палочкой), и она повторит его рельеф. Здесь рост кристалла будет ограничен стенками стакана, и преимущественно, он будет расти в стороны – это хорошо для медного купороса и для плоских кристаллов в принципе (жёлтая кровяная соль, гидрофталат калия).

В случае с квасцами лучше использовать нить, которой обматываем затравку, а остальную часть нити закрепляем на каркасе из двух пересечённых палочек. Кристалл при этом должен “висеть” в растворе в центре. Но здесь требуется следить за тем, чтобы не обрастала нить. Если такое произошло, то нить с кристаллом вынимаем, счищаем лишнее и заново готовим раствор* (греют, подготавливают к температуре кристалл и т. п.) Надо помните: чтобы не было наростов на нити, нить должна быть тонкой без волосков, и должна быть опущена с затравкой в раствор на 5о теплее, чем для простой затравки. Такая нить успевает пропитаться раствором и “сливается” с системой в единое целое.

Теперь следует следить за ростом кристалла каждый день, ни в коем случае не сотрясая раствор, иначе эта встряска породит в системе мгновенную кристаллизацию. Так многие авторы советую доливать раствор в систему по мере его испарения. Это очень сложная операция, поскольку возникшая сильная диффузия также может вызвать сбои в росте кристалла. Вначале мы увидим, как система будет “обживать” затравку, как они будут подстраиваться друг под друга. В итоге должно получиться следующее:

Рис.13 кристаллы меди Рис. 14 кристаллы квасцов

Полученные кристаллы медного купороса (рис.11) и алюмокалиевых квасцов (рис. 12), за одну неделю выращивания.

Наши результаты:

https://pandia.ru/text/78/007/images/image018_21.jpg" width="257" height="179 src=">

Рис. 15 Рис. 16

Выращенные нами кристаллы медного купороса (рис. 15) и алюмокалиевых квасцов (рис. 16), за одну неделю выращивания.

Вывод:

Мы научились выращивать кристаллы и узнали, что этим способом можно выращивать кристаллы любых других простых веществ, а также, что необходимо для выращивания и как происходит рост кристаллов.

Мы хотим дать советы тем, кто заинтересовался этой работой и хочет вырастить кристалл самостоятельно в домашних условиях.

Наши советы:

Ø Для выращивания кристаллов используют только свежеприготовленные растворы.

Ø Чтобы кристаллы росли как можно правильно, а у бесцветного вещества они были прозрачными, кристаллизация должна идти медленно, иначе кристалл мутнеет.

Ø Чем меньше выбранная вами затравка, чем она правильнее, тем легче раствору (системе) подстроиться под неё.

Заключение.

Итак, в данной работе была рассказана лишь малая часть того, что известно о кристаллах в настоящее время, однако и эта информация показала, насколько неординарны и загадочны кристаллы по своей сущности.
В облаках, в глубинах Земли, на вершинах гор, в песчаных пустынях, в морях и океанах, в научных лабораториях, в клеточках растений, в живых и мертвых организмах везде встретим мы кристаллы. Но может кристаллизация вещества совершается только на нашей планете? Нет, мы знаем теперь, что и на других планетах и далеких звездах все время непрерывно возникают, растут и разрушаются кристаллы. Метеориты, космические посланцы, тоже состоят из кристаллов, причем иногда в их состав входят кристаллические вещества, на Земле не встречающиеся. Кристаллы везде.
Люди привыкли использовать кристаллы, делать из них украшения, любоваться ими. Теперь, когда изучены методы искусственного выращивания кристаллов, область их применение расширилась, и, возможно, будущее новейших технологий принадлежит кристаллам и кристаллическим агрегатам.

Список литературы.

1. ; «Занимательные опыты по химии», 1995 г.

2. Алферова «Большой справочник по химии для школьников»,2002

3. «Энциклопедия драгоценных камней и кристаллов», 2008

4. «Кристаллы. Их роль в природе и науке.», 1970

5. «Сила кристаллов»,2003

6. «Физика твёрдого тела», 2008

7. Довбни «Мир кристаллов», 2006

8. «Камень, рождающий металл», 1984г.;

9. «Минерал рассказывает о себе», 1985 г.;

10. «Физика. Справочные материалы», 1991г.

11. «Физический практикум.» , 2002.

12. Петров « Выращивание кристаллов из растворов», 2000

13. «Школьникам о современной физике», М.; 1990г.

14. «Замечательные минералы», 1983г

15. Сухарёва «Удивительный мир кристаллов», 2007

16. Холл Джуди «Путеводитель по миру кристаллов. Иллюстрированный справочник», 2007

17. , «Основы кристаллографии», 2006

18. «Кристаллография. Лабораторный практикум», 2005

19. ; "Кристаллы", 1985 г.;

Жидкие вещества, состоящие из регулярно расположенных атомов, молекул, ионов или их групп. Размер последних может составлять 10-10000 нм и более. В твёрдых веществах эти частицы уложены в одинаковые параллелепипеды, так называемые элементарные ячейки. Ячейку можно представить как вложение друг в друга нескольких Браве решёток, в каждой из которых узлы заняты атомами одного сорта. Число вложений определяется количеством в кристалле сортов атомов в неэквивалентных положениях. Периодическое повторение в пространстве элементарной ячейки составляет кристаллическую структуру, а всех вложенных решёток Браве - кристаллическую решётку. Жидкие кристаллы сложены из параллельно ориентированных органических молекул, удлинённых в отношении, большем чем около 1:2,5. В так называемых смектических жидких кристаллах эти слои примерно параллельны друг другу.

Симметрия кристаллов. Необходимость сплошного регулярного заполнения пространства допускает возможность в кристаллах осей симметрии только 2, 3, 4 и 6-го порядков, т. е. совмещения кристалла (всех его частей) с самим собой при поворотах вокруг оси на 180°, 120°, 90° и 60°. Кристалл может обладать другими операциями симметрии - плоскостями симметрии и центром симметрии (смотри Симметрия кристаллов). Совокупность всех операций симметрии, оставляющих одну точку неподвижной, образует точечную группу симметрии кристалла. Группа атомов, периодическим повторением которой построена любая структура кристаллов, принадлежит к одному из 32 классов точечной симметрии, а вся структура - к одной из 230 групп пространственной симметрии. 32 класса точечной симметрии распределены по 7 системам (сингониям). В порядке понижения симметрии это: кубическая, гексагональная, тригональная, тетрагональная, ромбическая, моноклинная и триклинная сингонии. В этом порядке увеличивается количество произвольных углов и неравных длин сторон элементарной ячейки. Симметрия кристалла налагает ограничения на возможные его свойства. Так, кристаллы с центром симметрии не могут спонтанно иметь противоположно заряженные грани, т. е. быть пироэлектриками или сегнетоэлектриками.

Структура и симметрия кристалла следуют из характера взаимодействия между его частицами. В кристалле это электромагнитное взаимодействие, которое определяется, прежде всего, электронами. Тип химической связи между атомами в кристаллах определяет многие их свойства (смотри Ионные кристаллы, Ковалентные кристаллы, Металлические кристаллы, Молекулярные кристаллы).

Кристаллы данного химического состава и структуры существуют лишь в определённых интервалах температуры и давления. Например, лёд при атмосферном давлении устойчив лишь ниже 0 °С, железо - ниже 1538 °С. Вне этих интервалов кристаллы либо плавятся, либо испаряются, либо, оставаясь твёрдыми, меняют расположение частиц, т. е. структуру, переходя в другую, так называемую полиморфную, модификацию (смотри Фазовый переход). Сростки кристаллов различной ориентации и порошки называют поликристаллами.

Структуру кристалла обычно определяют методом рентгеновского структурного анализа. Кристалл можно представить как совокупность взаимно параллельных и всевозможно ориентированных семейств плоскостей, вдоль которых расположены атомы кристалла. Поверхностная плотность атомов в каждом семействе различна. Рентгеновский луч отражается наиболее интенсивно от плоскостей кристалла с наибольшей плотностью атомов. Регистрируя интенсивности отражений под разными углами, расшифровывают не только структуру кристалла, но и структуру составляющих его молекул. Чем больше размеры элементарной ячейки и чем совершеннее кристалл, тем больше измеримых отражений можно получить и тем точнее определить координаты атомов. Структуры сотен тысяч неорганических соединений собраны в международных банках данных. Выращивание более 20 тысяч кристаллов из молекул белков и вирусов позволило определить строение этих биологических молекул и частиц, содержащих иногда десятки тысяч атомов (смотри Биологический кристалл). Современные электронная, атомно-силовая и туннельная микроскопии позволяют увидеть атомную структуру кристалла (рис. 1).

Кристаллы в природе . Большинство веществ на Земле и других планетах находится в твёрдом кристаллическом состоянии. Кристаллы в природе называют минералами. Они составляют минеральное сырьё, например соли и оксиды металлов (руды), кварц (SiO 2), кальцит (СаСО 3 , в мелкокристаллической форме - мрамор), гранитный кристалл, входящие в состав живых организмов, - биоминералы, они преимущественно являются малорастворимыми солями металлов (Са, Mg, Mn и др.) угольной или фосфорных кислот, чередующимися с отложением белков. Кости и зубы на 70% состоят из кристалла гидроксиапатита, в элементарную ячейку которого входят две молекулы Са 5 (РО 4) 3 ОН. Размер кристалла биоминералов - от нескольких нм до нескольких мкм. Камни в почках и поджелудочной железе могут достигать нескольких мм и см. Кристаллы полимеров состоят из параллельных слоёв, в которые уложены длинные цепи полимерных молекул.

Коллоидные частицы размером 10 2 - 10 3 нм, одинаково заряженные адсорбированными на них ионами жидкости, упорядочиваются в этой жидкости в коллоидные кристаллы, так как плотная упаковка в кристаллах позволяет разместить в единице объёма больше частиц, чем при хаотичном размещении.

Природные опалы - это плотноупакованные шарики аморфного SiO 2 с диаметром, близким к длине волны видимого света (около 0,5 мкм), «склеенные» наполнителем межчастичного пространства (смотри Фотонный кристалл).

Форма кристаллов. Форма необработанного кристалла - это форма его роста (смотри Кристаллизация); она отражает атомную структуру кристалла. Плоскости кристалла, в которых плотность атомов наибольшая, растут наиболее медленно, путём последовательной генерации и распространения новых слоёв толщиной в одну или несколько элементарных ячеек. Поэтому именно ими обычно и ограничиваются кристаллические многогранники, вырастающие из паров, растворов или химически сложных расплавов. У веществ с низкой энтропией плавления, например у металлов, тепловое движение разупорядочивает поверхности любой ориентации. Тогда кристалл растёт с почти одинаковой скоростью во всех направлениях и имеет почти сферическую форму. Эта форма неустойчива и превращается в так называемую дендритную (рис. 2). Металлургический слиток - это конгломерат сросшихся переплетённых дендритов. Снежинки представляют собой выросшие из паров дендриты льда. Несмотря на причудливую форму, дендрит имеет единую кристаллическую решётку, т. е. является монокристаллом.

Совокупность кристаллографически одинаковых граней, т. е. граней, совмещающихся друг с другом при операциях симметрии данного класса точечной симметрии, образует так называемую простую форму кристалла. Всего существует 47 простых форм, но в каждом классе могут реализоваться лишь некоторые из них. Кристалл может быть огранён гранями одной простой формы (рис. 3, а), но чаще гранями, возникающими в результате комбинации этих форм (рис. 3, б, в). Кристалл, принадлежащий к классу, содержащему только поворотные оси симметрии (не содержащему плоскостей, центра симметрии или инверсионных осей), например кварц, может кристаллизоваться в зеркально различных формах - правой и левой (так называемый энантиоморфизм).

Свойства кристаллов зависят от направления в кристалле, т. е. кристалл анизотропен. Например, одна и та же разность потенциалов, приложенная в разных направлениях в монокристалле, вызывает различный электрический ток. Зависимость направления и силы тока от приложенного электрического поля описывается тензором проводимости 2-го ранга, а не одним числом, как в случае проводимости аморфного твёрдого тела или жидкости. Количество независимых и ненулевых компонентов тензора определяется точечной симметрией кристалла. Аналогично, внешнее электрическое поле, по-разному ориентированное относительно кристаллической решётки диэлектрика, вызывает различное смещение ионов (поляризацию), не параллельное приложенному полю. Поэтому скорость света в некубическом кристалле, например КН 2 РО 4 (KDP), зависит от направления в кристалле, а луч света раздваивается. Оба луча могут идти параллельно в избранных направлениях (синхронизм), и тогда электрические поля их световых волн складываются. Тензор диэлектрической проницаемости 2-го ранга кристалла зависит от поля через тензор 3-го ранга электрооптического коэффициента. В результате возникает вторая гармоника, т. е. частота света, прошедшего через KDP, удваивается. Это находит применение в оптике, в частности в создаваемых лазерных установках для получения энергии за счёт слияния ядер дейтерия и трития. Электрооптический эффект используется также для отклонения луча света, проходящего через кристалл, приложением разности потенциалов к кристаллу. Тензор 3-го ранга пьезоэлектрического коэффициента определяет разность потенциалов между гранями кристалла, то есть вектор электрической поляризации кристалла, вызванной механической нагрузкой на кристалл (тензором напряжений в кристалле). Эффект используется для измерения малых напряжений и смещений. Обратный эффект - деформация кристалла под действием приложенного поля (смотри Электрострикция), управляет движением иглы - щупа поверхности в сканирующем туннельном и атомно-силовом микроскопах.

Дефекты кристалла - это нарушение строгой периодичности его структуры. К точечным дефектам относятся пустые узлы (вакансии), чужеродные частицы в узлах решётки или междоузлиях (примеси); линейные дефекты - дислокации, представляющие собой края незавершённых плоскостей решётки внутри кристалла (рис. 1); двумерные дефекты - границы повёрнутых относительно друг друга областей кристалла, дефекты упаковки, границы двойников. В кристалле нередки макроскопические включения, а также внутренние механические напряжения, вызываемые точечными, линейными и двумерными дефектами. Почти все дефекты существенно изменяют полупроводниковые свойства кристалла, уменьшают электропроводность металлов; примеси и вакансии меняют окраску диэлектриков, влияют на лёгкость переполяризации сегнетоэлектриков и перемагничивания ферромагнетиков и т. п. Дислокации, границы зёрен и дефекты упаковки полностью определяют пластичность и прочность кристаллов, но мало влияют на их упругость.

Выращивание кристаллов . Выращивают монокристаллы чаще всего из расплавов, реже из растворов и паров (смотри Кристаллизация). Преимущество расплавов - в близости плотностей кристалла и расплава, что позволяет достичь максимальный скорости роста (порядка нескольких мм/мин). Напротив, тонкие монокристаллические плёнки для электроники получают главным образом в процессах газофазовых, преимущественно поверхностных, химических реакций, а также конденсацией молекулярных пучков в вакууме со скоростью порядка нескольких нм/мин на пластинах, вырезанных из монокристаллов. При этом используют явление эпитаксии - ориентированного нарастания одного кристалла на другом. К началу 21 века в промышленности полупроводниковых кристаллов выращивается около 6 тысяч тонн кристаллов кремния в год. Монокристаллы бездислокационного Si с плотностью точечных дефектов порядка 10 -10 от плотности атомов, с диаметром до 30 см и длиной до 2 м вытягивают из расплава. Близкие методы используются при выращивании лазерных кристаллов меньшего размера. Скорость роста кристаллов из раствора гораздо ниже (порядка нескольких мм/сутки), однако усилия, в том числе совместные, учёных России и США позволяют промышленно выращивать кристаллы KDP размером около 0,5 м (рис. 4) со скоростью около 1,5 см/сутки при сохранении высокого совершенства. Главными взаимосвязанными проблемами выращивания остаются совершенство и чистота кристаллов.

Поликристаллические слитки металлов - главная продукция металлургии. Управление размером, формой и эволюцией этих кристаллов, исследование роли добавок, их подбор и многие другие вопросы - предмет металловедения. Поликристаллы в виде порошков также широко производятся промышленностью. Нанокристаллы размером 1-100 нм (рис. 5) получают при химических реакциях в растворах или газах. Чтобы избежать укрупнения нанокристаллов, вызываемого уменьшением их общей поверхностной энергии, они покрываются тонкими оболочками. Перспективно также выращивание длинных (порядка нескольких мм) нанотрубок - свёрнутых слоёв графита, а также нитевидных кристаллов.

Применение кристаллов . Кристаллы - основа множества современных устройств. Они главные функциональные элементы твердотельной электроники: компьютеров, генераторов и приёмников излучения (в том числе лазерного), устройств магнитной записи, бытовой электроники и т. п. кристаллы широко используются в оптике, а также в качестве конструкционных материалов (например, сапфир) во множестве различных датчиков и других точных приборов. Кристаллические порошки (соль, сахар, лекарства, минеральные удобрения, взрывчатые вещества и др.) широко применяются в пищевой, фармацевтической промышленности, сельском хозяйстве, металлургии и других областях.

Лит.: Современная кристаллография. М., 1979-1981. Т. 1-4; Чупрунов Е. В., Хохлов А. Ф., Фаддеев М. А. Кристаллография. М., 2000; Ландау Л. Д., Лифшиц Е. М. Статистическая физика. 5-е изд. М., 2001.

Расположены закономерно, образуя трёхмерно-периодическую пространственную укладку - кристаллическую решётку .

Если кристаллические решетки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решетки. Сами расстояния между частицами называются параметрами решетки. Параметры решетки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например методами рентгеновского структурного анализа.

Источники

Литература

  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989.
  • Курс общей физики, книга 3, И. В. Савельев: Астрель, 2001, ISBN 5-17-004585-9
  • Кристаллы / М. П. Шаскольская , 208 с ил. 20 см, 2-е изд., испр. М. Наука 1985

См. также

Ссылки

  • Кристаллы минералов , Формы природного растворения кристаллов
  • Единственный с своём роде завод, производящий Кристаллы

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Кристалл" в других словарях:

    Кристалл (ПО, Смоленск) ОАО «Производственное объединение «Кристалл» Тип Открытое акционерное общество Год основания 1963 Расположение … Википедия

    - (греч. krystallos, от krystaino замерзаю, и kryos холод). Твердое тело, ограниченное прямолинейными равными плоскостями, смыкающимися под известными углами. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КРИСТАЛЛ… … Словарь иностранных слов русского языка

    кристалл - а, м. cristal m., нем. Kristal <лат. crystallus <гр. krystallos лед. 1. Стекловидный минерал, имеющий форму естественного многогранника. Сл. 18. Примечания достойны были кремни, имеющия внутри пустоты наполненныя кристалями, из коих иные… … Исторический словарь галлицизмов русского языка

    Кристалл - (Енакиево,Украина) Категория отеля: Адрес: Проспект Горняков 15 а, Енакиево, 86405, Украина … Каталог отелей

    - [κρύσταλλος (кристаллёс) лед, горный хрусталь] твердое тело, в котором элементарные частицы (атомы, ионы, молекулы) расположены закономерно по геометрическим законам пространственных гр. и… … Геологическая энциклопедия

    Друза, кристаллит, кристаллик, вискер, микролит, периморфоза, рафид, хрусталь Словарь русских синонимов. кристалл см. хрусталь Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова … Словарь синонимов

    кристалл - 1. Твердая композиция атомов ионов, молекул, существующая в трехмерном пространстве. 2. Такая форма частицы или части вещества, атомы которой распределены в одинаковом геометрическом порядке. Кристалл имеет оптические и другие свойства и растет… … Справочник технического переводчика

    КРИСТАЛЛ, твердое вещество с определенным химическим составом, имеющее правильную геометрическую форму и постоянные углы между гранями. Структура кристаллов, например, обыкновенной соли, основывается на правильном трехмерном расположении атомов,… … Научно-технический энциклопедический словарь

    См. Драгоценные камниБиблейская энциклопедия Брокгауза