Классификация событий на возможные достоверные и случайные. Классификация случайных событий. Полная вероятность события

План.

1. Случайная величина (СВ) и вероятность события.

2. Закон распределения СВ.

3. Биномиальное распределение (распределение Бернулли).

4. Распределение Пуассона.

5. Нормальное (гауссовское) распределение.

6. Равномерное распределение.

7. Распределение Стьюдента.

2.1 Случайная величина и вероятность события

Математическая статистика тесно связана с другой математической наукой – теорией вероятности и базируется на ее математическом аппарате.

Теория вероятности – это наука, которая изучает закономерности, порожденные случайными событиями.

Педагогические явления относятся к числу массовых: они охватывают большие совокупности людей, повторяются из года в год, совершаются непрерывно. Показатели (параметры, результаты) педагогического процесса имеют вероятностный характер: одно и то же педагогическое воздействие может приводить к различным следствиям (случайные события, случайным величинам). Тем не менее, при многократном воспроизведении условий определенные следствия появляются чаще других, - это и есть проявление так называемых статистических закономерностей (изучением которых занимаются теория вероятностей и математическая статистика).

Случайная величина (СВ) – это численная характеристика, измеряемая по ходу опыта и зависящая от случайного исхода. СВ реализуемая по ходу опыта и сама является случайной. Каждая СВ задает распределение вероятностей.

Основным свойством педагогических процессов, явлений служит их вероятностный характер (при данных условиях они могут произойти, реализоваться, но могут и не произойти). Для таких явлений существенную роль играет понятие вероятности.

Вероятность (Р) показывает степень возможности осуществления данного события, явления, результата. Вероятность невозможного события равна нулю p = 0, достоверного - единице p = 1 (100%). Вероятность любого события лежит в пределах от 0 до 1, в зависимости от того, насколько это событие случайно.

Если мы интересуемся событием A, то, скорее всего, можем наблюдать, фиксировать факты его появления. Потребность в понятии вероятности и ее вычисления возникнет, очевидно, только тогда, когда мы наблюдаем это событие не каждый раз, либо осознаем, что оно может произойти, а может не произойти. И в том и другом случае полезно использовать понятие частоты появления события f(A) - как отношения числа случаев его появления (благоприятных исходов) к общему числу наблюдений. Частота наступления случайного события зависит не только от степени случайности самого события, но и от числа (количества) наблюдений за этой СВ.

Существует два вида выборок СВ: зависимые и независимые . Если результаты измерения некоторого свойства у объектов первой выборки не оказывают влияния на результаты измерения этого свойства у объектов второй выборки, то такие выборки считаются независимыми. В тех случаях, когда результаты одной выборки влияют на результаты другой выборки, выборки считают зависимыми . Классический способ получения зависимых измерений – это двукратное измерение одного и того же свойства (или разных свойств) у членов одной и той же группы.

Событие А не зависит от события В, если вероятность события А не зависит от того произошло или нет событие В. События А и В независимы, если Р(АВ)=Р(А)Р(В). На практике независимость события устанавливается из условий опыта, интуиции исследователя и практики.

СВ бывает дискретной (мы можем пронумеровать ее возможные значения), например, выпадение игральной кости = 4, 6, 2, и непрерывной (ее функция распределения F(x) – непрерывна), например, время службы лампочки.

Математическое ожидание – числовая характеристика СВ, приближенно равная среднему значению СВ:

M(x)=x 1 p 1 +x 2 p 2 +…+x n p n

2.2 Закон распределения СВ

Подчиняются ли каким-либо законам явления, носящие случайный характер? Да, но эти законы отличаются от привычных нам физических законов. Значения СВ невозможно предугадать даже при известных условиях эксперимента, мы можем лишь указать вероятности того, что СВ примет то или иное значение. Зато зная распределение вероятностей СВ, мы можем делать выводы о событиях, в которых участвуют эти случайные величины. Правда, эти выводы будут также носить вероятностный характер.

Пусть некоторая СВ является дискретной, т.е. может принимать лишь фиксированные значения X i . В этом случае ряд значений вероятностей P(X i) для всех (i=1…n) допустимых значений этой величины называют её законом распределения.

Закон распределения СВ - это отношение, устанавливающее связь между возможными значениями СВ и вероятностями, с которыми принимаются эти значения. Закон распределения полностью характеризует СВ.

При построении математической модели для проверки статистической гипотезы необходимо ввести математическое предположение о законе распределения СВ (параметрический путь построения модели).

Непараметрический подход к описанию математической модели (СВ не имеет параметрического закона распределения) менее точен, но имеет более широкую область применения.

Точно также, как и для вероятности случайного события, для закона распределения СВ есть только два пути его отыскания. Либо мы строим схему случайного события и находим аналитическое выражение (формулу) вычисления вероятности (возможно, кто–то уже сделал или сделает это до вас!), либо придется использовать эксперимент и по частотам наблюдений делать какие–то предположения (выдвигать гипотезы) о законе распределения.

Конечно же, для каждого из "классических" распределений уже давно эта работа проделана ­– широко известными и очень часто используемыми в прикладной статистике являются биномиальное и полиномиальное распределения, геометрическое и гипергеометрическое, распределение Паскаля и Пуассона и многие другие.

Для почти всех классических распределений немедленно строились и публиковались специальные статистические таблицы, уточняемые по мере увеличения точности расчетов. Без использования многих томов этих таблиц, без обучения правилам пользования ими последние два столетия практическое использование статистики было невозможно.

Сегодня положение изменилось – нет нужды хранить данные расчетов по формулам (как бы последние не были сложны!), время на использование закона распределения для практики сведено к минутам, а то и секундам. Уже сейчас существует достаточное количество разнообразных пакетов прикладных компьютерных программ для этих целей.

Среди всех вероятностных распределений есть такие, которые используются на практике особенно часто. Эти распределения детально изучены и свойства их хорошо известны. Многие из этих распределений лежат в основе целых областей знаний – таких, как теория массового обслуживания, теория надежности, контроль качества, теория игр и т.п.

2.3 Биномиальное распределение (распределение Бернулли)

Возникает в тех случаях, когда ставится вопрос: сколько раз происходит некоторое событие в серии из определенного числа независимых наблюдений (опытов), выполняемых в одинаковых условиях.

Для удобства и наглядности будем полагать, что нам известна величина p – вероятность того, что вошедший в магазин посетитель окажется покупателем и (1– p) = q – вероятность того, что вошедший в магазин посетитель не окажется покупателем.

Если X – число покупателей из общего числа n посетителей, то вероятность того, что среди n посетителей оказалось k покупателей равна

P(X= k) = , где k=0,1,…n (1)

Формулу (1) называют формулой Бернулли. При большом числе испытаний биномиальное распределение стремиться к нормальному.

2.4 Распределение Пуассона

Играет важную роль в ряде вопросов физики, теории связи, теории надежности, теории массового обслуживания и т.д. Всюду, где в течение определенного времени может происходить случайное число каких-то событий (радиоактивных распадов, телефонных вызовов, отказов оборудования, несчастный случаях и т.п.).

Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть некоторые события (покупки в магазине) могут происходить в случайные моменты времени. Определим число появлений таких событий в промежутке времени от 0 до Т.

Случайное число событий, происшедших за время от 0 до Т, распределено по закону Пуассона с параметром l=аТ, где а>0 – параметр задачи, отражающий среднюю частоту событий. Вероятность k покупок в течение большого интервала времени, (например, – дня) составит

P(Z=k) =

(2)


2.5 Нормальное (гауссовское) распределение

Нормальное (гауссовское) распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению его впервые рассматривал А.Муавр в 1733 г. Через некоторое время нор­мальное распределение снова открыли и изучили К.Гаусс (1809 г.) и П.Лаплас, которые пришли к нормальной функции в связи с ра­ботой по теории ошибок наблюдений.

Непрерывная случайная величина Х называется распределенной по нормальному закону , если ее плотность распределения равна

где


совпадает с математическим ожиданием величины Х:
=М(Х), параметр s совпадает со средним квадратическим отклонением величины Х: s =s(Х). График функции нормального распределения, как видно из рисунка, имеет вид куполо­образной кривой, называемой Гауссовой, точка максимума имеет координаты (а;

Эта кривая при μ=0, σ=1 получила статус стандарта, ее называют единичной нормальной кривой, то есть любые собранные данные стремятся преобразовать так, чтобы кривая их распределения была максимально близка к этой стандартной кривой.

Нормализованную кривую изобрели для решения задач теории вероятности, но оказалось на практике, что она отлично аппроксимирует распределение частот при большом числе наблюдений для множества переменных. Можно предположить, что не имея материальных ограничений на количество объектов и время проведения эксперимента, статистическое исследование приводится к нормально кривой.

2.6 Равномерное распределение

Равномерное распределение вероятностей является простейшим и может быть как дискретным, так и непрерывным. Дискретное равномерное распределение – это такое распределение, для которого вероятность каждого из значений СВ одна и та же, то есть:

где N – количество возможных значений СВ.

Распределение вероятностей непрерывной CВ Х, принимающие все свои значения из отрезка [а;b] называется равномерным, если ее плотность вероятности на этом отрезке постоянна, а вне его равна нулю:

(5)

2.7 Распределение Стьюдента

Это распределение связано с нормальным. Если СВ x 1 , x 2 , … x n – независимы, и каждая из них имеет стандартное нормальное распределение N(0,1), то СВ имеет распределение, называемое распределением Стьюдента :

Классификация событий на возможные, вероятные и случайные. Понятия простого и сложного элементарного события. Операции над событиями. Классическое определение вероятности случайного события и её свойства. Элементы комбинаторики в теории вероятностей. Геометрическая вероятность. Аксиомы теории вероятностей.

Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом , или испытанием , понимается осуществление определённого комплекса условий.

Примеры событий:

  • - попадание в цель при выстреле из орудия (опыт -- произведение выстрела; событие -- попадание в цель);
  • - выпадение двух гербов при трёхкратном бросании монеты (опыт -- трёхкратное бросание монеты; событие -- выпадение двух гербов);
  • - появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт -- измерение дальности; событие -- ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита A,B,C и т.д.

Различают события совместные и несовместные . События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие AA -- выпадание трех очков на первой игральной кости, событие B -- выпадание трех очков на второй кости. A и В -- совместные события.

Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие A -- наудачу взятая коробка окажется с обувью черного цвета, событие B -- коробка окажется с обувью коричневого цвета, A и B -- несовместные события.

Событие называется достоверным , если оно обязательно произойдет в условиях данного опыта.

Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная -- невозможным.

Событие называется возможным , или случайным , если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.

События называются равновозможными , если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.

Важным понятием является полная группа событий . Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера.

A -- появление красного шара при одном извлечении,

B -- появление белого шара,

C -- появление шара с номером. События A,B,C образуют полную группу совместных событий.

Введем понятие противоположного, или дополнительного, события. Под противоположным событием

AЇ понимается событие, которое обязательно должно произойти, если не наступило некоторое событие

A. Противоположные события несовместны и единственно возможны. Они образуют полную группу событий.


Классификация событий на возможные, вероятные и случайные. Понятия простого и сложного элементарного события. Операции над событиями. Классическое определение вероятности случайного события и её свойства. Элементы комбинаторики в теории вероятностей. Геометрическая вероятность. Аксиомы теории вероятностей.

Классификация событий

Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом , или испытанием , понимается осуществление определённого комплекса условий.


Примеры событий:

    – попадание в цель при выстреле из орудия (опыт - произведение выстрела; событие - попадание в цель);
    – выпадение двух гербов при трёхкратном бросании монеты (опыт - трёхкратное бросание монеты; событие - выпадение двух гербов);
    – появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности; событие - ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т.д.


Различают события совместные и несовместные . События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие - выпадание трех очков на первой игральной кости, событие - выпадание трех очков на второй кости. и - совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие - наудачу взятая коробка окажется с обувью черного цвета, событие - коробка окажется с обувью коричневого цвета, и - несовместные события.


Событие называется достоверным , если оно обязательно произойдет в условиях данного опыта.


Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная - невозможным.


Событие называется возможным , или случайным , если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.


События называются равновозможными , если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.


Важным понятием является полная группа событий . Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. - появление красного шара при одном извлечении, - появление белого шара, - появление шара с номером. События образуют полную группу совместных событий.


Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие . Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным - событие , либо бракованным - событие .

Операции над событиями

При разработке аппарата и методики исследования случайных событий в теории вероятностей очень важным является понятие суммы и произведения событий.


Суммой, или объединением, нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий.


Сумма событий обозначается так:


Например, если событие есть попадание в цель при первом выстреле, событие - при втором, то событие есть попадание в цель вообще, безразлично, при каком выстреле - первом, втором или при обоих вместе.


Произведением, или пересечением, нескольких событий называется событие, состоящее в совместном появлении всех этих событий.


Произведение событий обозначается


Например, если событие есть попадание в цель при первом выстреле, событие - при втором, то событие состоит в том, что в цель попали при обоих выстрелах.


Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию. Пусть событие состоит в попадании точки в область , событие - в попадании в область , тогда событие состоит в попадании точки в область, заштрихованную на рис. 1, и событие - в попадании точки в область, заштрихованную на рис. 2.


Классическое определение вероятности случайного события

Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события.


Вероятностью события называется число, являющееся выражением меры объективной возможности появления события.


Вероятность события будем обозначать символом .


Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.



Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число , число случаев , благоприятствующих данному событию, и затем выполнить расчет по формуле (1.1).


Из формулы (1.1) следует, что вероятность события является неотрицательным числом и может изменяться в пределах от нуля до единицы в зависимости от того, какую долю составляет благоприятствующее число случаев от общего числа случаев:


Свойства вероятности

Свойство 1. Если все случаи являются благоприятствующими данному событию , то это событие обязательно произойдет. Следовательно, рассматриваемое событие является достоверным, а вероятность его появления , так как в этом случае



Свойство 2. Если нет ни одного случая, благоприятствующего данному событию , то это событие в результате опыта произойти не может. Следовательно, рассматриваемое событие является невозможным, а вероятность его появления , так как в этом случае :



Свойство 3. Вероятность наступления событий, образующих полную группу, равна единице.


Свойство 4. Вероятность наступления противоположного события определяется так же, как и вероятность наступления, события :



где - число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события :



Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.

Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.


Решение. Обозначим событие, состоящее в том, что набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных исходов равно 10. Эти исходы единственно возможны (одна из цифр набрана обязательно) и равновозможны (цифра набрана наудачу). Благоприятствует событию лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех исходов:


Элементы комбинаторики

В теории вероятностей часто используют размещения, перестановки и сочетания. Если дано множество , то размещением (сочетанием) из элементов по называется любое упорядоченное (неупорядоченное) подмножество элементов множества . При размещение называется перестановкой из элементов.


Пусть, например, дано множество . Размещениями из трех элементов этого множества по два являются , , , , , ; сочетаниями - , , .


Два сочетания различаются хотя бы одним элементом, а размещения различаются либо самими элементами, либо порядком их следования. Число сочетаний из элементов по вычисляется по формуле



есть число размещений из элементов по ; - число перестановок из элементов.

Пример 2. В партии из 10 деталей имеется 7 стандартных. Найти вероятность того, что среди взятых наудачу 6 деталей ровно 4 стандартных.


Решение. Общее число возможных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. равно - числу сочетаний из 10 элементов по 6. Число исходов, благоприятствующих событию (среди 6 взятых деталей ровно 4 стандартных), определяем так: 4 стандартные детали можно взять из 7 стандартных деталей способами; при этом остальные детали должны быть нестандартными; взять же 2 нестандартные детали из нестандартных деталей можно способами. Следовательно, число благоприятствующих исходов равно . Исходная вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех исходов:


Статистическое определение вероятности

Формулу (1.1) используют для непосредственного вычисления вероятностей событий только тогда, когда опыт сводится к схеме случаев. На практике часто классическое определение вероятности неприменимо по двум причинам: во-первых, классическое определение вероятности предполагает, что общее число случаев должно быть конечно. На самом же деле оно зачастую не ограничено. Во-вторых, часто невозможно представить исходы опыта в виде равновозможных и несовместных событий.


Частота появления событий при многократно повторяющихся Опытах имеет тенденцию стабилизироваться около какой-то постоянной величины. Таким образом, с рассматриваемым событием можно связать некоторую постоянную величину, около которой группируются частоты и которая является характеристикой объективной связи между комплексом условий, при которых проводятся опыты, и событием.


Вероятностью случайного события называется число, около которого группируются частоты этого события по мере увеличения числа испытаний.


Это определение вероятности называется статистическим.


Преимущество статистического способа определения вероятности состоит в том, что он опирается на реальный эксперимент. Однако его существенный недостаток заключается в том, что для определения вероятности необходимо выполнить большое число опытов, которые очень часто связаны с материальными затратами. Статистическое определение вероятности события хотя и достаточно полно раскрывает содержание этого понятия, но не дает возможности фактического вычисления вероятности.

В классическом определении вероятности рассматривается полная группа конечного числа равновозможных событий. На практике очень часто число возможных исходов испытаний бесконечно. В таких случаях классическое определение вероятности неприменимо. Однако иногда в подобных случаях можно воспользоваться другим методом вычисления вероятности. Для определенности ограничимся двумерным случаем.


Пусть на плоскости задана некоторая область площадью , в которой содержится другая область площадью (рис. 3). В область наудачу бросается точка. Чему равна вероятность того, что точка попадет в область ? При этом предполагается, что наудачу брошенная точка может попасть в любую точку области , и вероятность попасть в какую-либо часть области пропорциональна площади части и не зависит от ее расположения и формы. В таком случае вероятность попадания в область при бросании наудачу точки в область



Таким образом, в общем случае, если возможность случайного появления точки внутри некоторой области на прямой, плоскости или в пространстве определяется не положением этой области и ее границами, а только ее размером, т. е. длиной, площадью или объемом, то вероятность попадания случайной точки внутрь некоторой области определяется как отношение размера этой области к размеру всей области, в которой может появляться данная точка. Это есть геометрическое определение вероятности.


Пример 3. Круглая мишень вращается с постоянной угловой скоростью. Пятая часть мишени окрашена в зеленый цвет, а остальная - в белый (рис. 4). По мишени производится выстрел так, что попадание в мишень - событие достоверное. Требуется определить вероятность попадания в сектор мишени, окрашенный в зелёный цвет.


Решение. Обозначим - "выстрел попал в сектор, окрашенный в зелёный цвет". Тогда . Вероятность получена как отношение площади части мишени, окрашенной в зелёный цвет, ко всей площади мишени, поскольку попадания в любые части мишени равновозможны.

Аксиомы теории вероятностей

Из статистического определения вероятности случайного события следует, что вероятность события есть число, около которого группируются частоты этого события, наблюдаемые на опыте. Поэтому аксиомы теории вероятностей вводятся так, чтобы вероятность события обладала основными свойствами частоты.


Аксиома 1. Каждому событию соответствует определенное число , удовлетворяющее условию и называемое его вероятностью.


Понятие события Событие: всякий факт, который в результате опыта может произойти или не произойти Классификация событий: достоверные невозможные вероятные равновозможные события несовместные события и полная группа несовместных событий независимые события противоположное событие


Модельные объекты в теории вероятностей: - монета (два равновозможных события) - игральная кость (шесть равновозможных событий - игральные карты (36 или 52 равновозможных событий) - шары разного цвета в урне (число равновозможных событий зависит от числа шаров разного цвета и общего числа шаров) Полная группа несовместных событий: - орел и решка у монеты - цифры 1, 2, 3, 4, 5, 6 у игральной кости


Комбинаторное определение вероятности Вероятность = отношению числа благоприятных событий к общему числу равновозможных событий n – общее число равновозможных событий m – число благоприятных событий Вероятность Область значений Р: Достоверное событие Р = 1Невозможное событие Р = 0


Задачи Задача 1: в урне находится 2 белых и 3 красных шара. Из урны наугад вытаскивается один шар. Какова вероятность того, что этот шар будет белым? Задача 2: подбрасывается монета. Какова вероятность выпадения орла? Вероятность выпадения решки? Задача 3: монета подбрасывается дважды. Какова вероятность выпадения двух орлов? Задача 4. Одновременно кидаются две игральные кости. Какова вероятность того, что сумма очков составит 3? Задача 5. Монета бросается 125 раз. Каковая вероятность, что она упадет орлом 16 раз?


Операции с событиями Сумма событий А и В: событие С, которое состоит в появлении хотя бы одного из событий А и В. С = А + В Произведение событий А и В: событие С, которое состоит в совместном появлении событий А и В. С = АВ Задача 6: Бросается кость. Записать событие, состоящее в том, что выпало четное число очков Задача 7: в одной урне 2 белых и 1 черный шар; в другой урне: 1 белый и 1 черный шар. Записать событие, которое состоит в том, что из урн выбраны 2 белых шара






Чтобы рассчитать статистическую вероятность необходимо после проведения испытаний подсчитать: общее число всех проведенных испытаний (n) число испытаний, в которых появилось событие А (m) рассчитать относительную частоту W(A) Пример: При обследовании 250 студентов у 25 человек был обнаружен бронхит. Какова вероятность заболевания у студентов? Решение: 1.общее число всех проведенных испытаний=250 2.число испытаний, в которых появилось событие А=25 Относительная частота:


Комбинаторика Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число возможных перестановок рассчитывается по формуле: P n = n!, n!= 123…n, причем 0!=1, 1!=1 Размещениями называют комбинации, составленные из n различных элементов по m элементов в каждом, которые отличаются либо элементами, либо их порядком. Число возможных размещений


Сочетаниями называют комбинации, составленные из n различных элементов по m элементов в каждом, которые отличаются хотя бы одним элементом Пример: Приема у врача ожидают 3 мужчин и 5 женщин. Врач вызывает двоих. Какова вероятность того, что зайдут один мужчина и одна женщина? Решение: 1) Число общих исходов (способы, которые позволяют вызвать 1 мужчину и 1 женщину из 8 человек) 2) Число благоприятных исходов для мужчин -, для женщин Вероятность




РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА: Основная литература: Ганичева А.В., Козлов В.П. Математика для психологов. М.: Аспект-пресс, 2005, с Павлушков И.В. Основы высшей математики и математической статистики. М., ГЭОТАР-Медиа, Журбенко Л. Математика в примерах и задачах. М.: Инфра-М, 2009.

Предмет теории вероятностей. Случайные события и их классификация. Классическое определение вероятности. Общие принципы комбинаторики.

Вероятность относится к числу таких понятий, которыми мы охотно пользуемся в повседневной жизни, совсем не задумываясь об этом. Например, даже наша речь носит отпечаток стихийно-вероятностного подхода к окружающей нас действительности. Мы часто употребляем слова "вероятно ", "маловероятно ", "невероят­но" . Уже в этих словах имеется попытка оценить возможность появления того или иного события, т.е. попытка дать количественную оценку этой возможности. Идея выражать числами степень возможности появления тех или иных событий возникла после того, как люди попытались обобщить достаточно большое число наблюдений за явлениями, в которых проявляется свойство устойчивости, т.е. способность повторяться довольно часто.

Например, нельзя заранее определить результат одного подбрасывания монеты. Но если подбрасывать монету достаточно большое число раз, то почти наверняка можно утверждать, что примерно половину раз она упадет на "орла", а половину на "решку". Число подобных примеров, в которых интуитивное представление о численном значении вероятности того или иного события, можно привести очень много. Однако все подобные примеры сопровождаются неопределенными понятиями типа "честное" подбрасывание, "правильная" монета и т.п. Теория вероятностей стала наукой лишь тогда, когда были выявлены основные понятия теории вероятностей, четко сформулировано само понятие вероятности, построена вероятностная аксиоматическая модель.

Любая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, плоскости, линии, поверхности; в математическом анализе – функции, предела, дифференциала, интеграла; в механике – силы, массы, скорости, ускорения. Естественно, что такие понятия есть и в теории вероятностей. Одним из таких основных понятий является понятие случайного события .

СЛУЧАЙНЫЕ СОБЫТИЯ И ИХ ВЕРОЯТНОСТИ

Случайные события и их классификация

Под событием будем понимать любое явление, которое происходит в результате осуществления определенного комплекса условий. Осуществление этого комплекса условий называют экспериментом (опытом, испытанием ). Заметим, что в проведении опыта необязательно должен участвовать сам исследователь. Опыт можно поставить мысленно, или он может протекать независимо от него; в последнем случае исследователь выступает в качестве наблюдателя.

Событие называется достоверным , если оно непременно должно произойти при выполнении определенных условий. Так, достоверным является выпадение не более шести очков при бросании обычной игральной кости; утверждение, что вода является находится в жидком состоянии при +20 0 С в нормальных условиях, и т.п. Событие называется невозможным , если оно заведомо не наступит при выполнении определенных условий. Так, невозможным событием является утверждение, что можно извлечь более четырех тузов из обычной колоды карт; или утверждение Мюнхгаузена, что он мог поднять себя за волосы, и т.п. Событие называется случайным, если оно может либо произойти, либо не произойти при выполнении определенных условий. Например, выпадение «орла» при бросании монеты; попадание в цель при одном выстреле по мишени и т.п.

В теории вероятностей любое событие рассматривается как результат некоторого эксперимента. Поэтому события часто называют исходами . При этом исход того или иного эксперимента должен зависеть от ряда случайных факторов, т.е. любой исход должен являться случайным событием; в противном случае, такими событиями должны заниматься другие науки. Особо следует отметить, что в теории вероятностей рассматриваются только такие эксперименты, которые можно повторить (воспроизвести) при неизменном комплексе условий произвольное число раз (по крайней мере теоретически). То есть, теория вероятностей изучает лишь такие события, в отношении которых имеет смысл не только утверждение об их случайности, но и возможна объективная оценка доли случаев их появления. В связи с этим, подчеркнем, что теория вероятностей не занимается изучением уникальных событий, как бы они ни были интересными сами по себе. Например, утверждение, что в данном месте в данное время произойдет землетрясение, относится к числу случайных событий. Однако подобные события уникальны, поскольку их нельзя воспроизвести.

Другой пример, событие, состоящее в том, что данный механизм проработает больше года, является случайным, но уникальным. Конечно, каждый механизм индивидуален по своим качествам, но этих механизмов может изготовляться очень много, причем изготовленных в одних и тех же условиях. Испытания многих сходных объектов дает ту информацию, которая позволяет оценить долю числа появления рассматриваемого случайного события. Таким образом, в теории вероятностей имеют дело с повторением испытаний двух типов : 1) повторение испытаний для одного и того же объекта ; 2) испытание многих сходных объектов .

В дальнейшем для краткости слово «случайный» будем опускать. События будем обозначать заглавными буквами латинского алфавита: A, B, C и т.д.

События A и B называются несовместными , если наступление одного из них исключает возможность появления другого. Например, при подбрасывании монеты могут наступить два события: выпадет "орел" или "решка". Однако, одновременно эти события, при одном подбрасывании, появится не могут. Если в результате испытания возможно одновременное появление событий A и B, то такие события называются совместными . Например, выпадение четного числа очков при подбрасывании игральной кости (событие А) и числа очков, кратного трем (событие В) будут совместными, ибо выпадение шести очков означает наступление и события А, и события В.