Применение сжиженных углеводородных газов. Сжиженный углеводородный газ — классификация, свойства и технологические преимущества. Область применения СУГ

Сжиженные углеводородные газы (СУГ) получают из попутного нефтяного газа. Это чистые газы или специальные смеси, которые могут быть использованы для отопления домов, в качестве автомобильного топлива, а также производства нефтехимической продукции.

ШФЛУ на ГФУ

Сжиженные углеводородные газы получают из широкой фракции легких углеводородов (ШФЛУ), которую, в свою очередь, выделяют из попутного нефтяного газа (ПНГ).

Разделение ШФЛУ на составляющие ее компоненты - индивидуальные углеводороды - происходит на газофракционирующих установках (ГФУ). Процесс разделения похож на разделение ПНГ. Однако в данном случае разделение должно быть более тщательным. Из ШФЛУ в процессе газофракционирования могут получаться различные продукты. Это может быть пропан или бутан, а также смесь пропан-бутана (ее называют СПБТ, или смесь пропана-бутана технических). СПБТ - наиболее распространенный вид сжиженных газов - именно в этом виде этот продукт поставляется населению, промышленным предприятиям и отправляется на экспорт. Так, из 2,034 млн тонн СУГ, реализованных «Газпром газэнергосеть» в 2012 году, на смесь пропан-бутана пришлось 41%, на бутан - треть поставок, на пропан - около 15%.

Также путем разделения ШФЛУ получают технический бутан и технический пропан, пропан автомобильный (ПА) или смесь ПБА (пропан-бутан автомобильный).

Существуют и другие компоненты, которые выделяют путем переработки ШФЛУ. Это изобутан и изобутилен, пентан, изопентан.

Как применяют сжиженные углеводородные газы

Сжиженные углеводородные газы могут использоваться по-разному. Наверное, каждому знакомы еще с советских времен ярко-красные баллоны с надписью пропан. Их используют для приготовления пищи на бытовых плитах или для отопления в загородных домах.


Также сжиженный газ может использоваться в зажигалках - туда обычно закачивают либо пропан, либо бутан.

Сжиженные углеводородные газы используются и для отопления промышленных предприятий и жилых домов в тех регионах, куда еще не дошел природный газ по трубопроводам. СУГ в этих случаях хранится в газгольдерах - специальных емкостях, которые могут быть как наземными, так и подземными.

По показателю эффективности пропан-бутан занимает второе место после магистрального природного газа. При этом использование СУГ более экологично по сравнению, например, с дизельным топливом или мазутом.

Газ в моторы и пакеты

Пропан, бутан и их смеси, наряду с природным газом (метаном), используются в качестве альтернативного топлива для заправки автомобилей.
Использование газомоторного топлива в настоящее время очень актуально, ведь ежегодно отечественным автопарком, состоящим из более 34 млн единиц транспортных средств, вместе с отработавшими газами выбрасывается 14 млн тонн вредных веществ. А это составляет 40% от общих промышленных выбросов в атмосферу. Отработавшие газы двигателей, работающих на газе, в несколько раз менее вредны.

В выхлопах газовых моторов содержится в 2–3 раза меньше оксида углерода (CO) и в 1,2 раза меньше окиси азота. При этом по сравнению с бензином стоимость СУГ ниже примерно на 30–50%.

Рынок газомоторного топлива активно развивается. В настоящее время в нашей стране насчитывается более 3000 газовых заправок и более 1 млн газобаллонных автомобилей.

Наконец, сжиженные углеводородные газы являются сырьем для нефтехимической промышленности. Для производства продукции СУГ подвергаются сложному процессу, протекающему при очень высоких температурах - пиролизу. В результате получаются олефины - этилен и пропилен, которые затем, в результате процесса полимеризации, превращаются в полимеры или пластики - полиэтилен, полипропилен и прочие виды продукции. То есть используемые нами в ежедневной жизни полиэтиленовые пакеты, одноразовая посуда, тара и упаковка многих продуктов производятся из сжиженных газов.

Сжиженный газ. Сжиженные углеводородные газы СУГ = Liquefied petroleum gas (LPG) и ШФЛУ == WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids)

Сжиженные углеводородные газы (СУГ) Liquefied petroleum gas (LPG) — смесь сжиженных под давлением лёгких углеводородов с температурой кипенияот −50 до 0 °C. Предназначены для применения в качестве топлива, а также используются в качестве сырья для органического синтеза. Состав может существенно различаться, основные компоненты: пропан, изобутан и н-бутан. Производятся СУГ в процессе ректификации широкой фракции лёгких углеводородов (ШФЛУ = WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids). ШФЛУ относится к сжиженным углеводородным газам и представляет собой легкокипящую и легковоспламеняющуюся жидкость, пожаро- и взрывоопасную, 4-го класса токсичности.

Таблица 1. Технические требования к ШФЛУ - это сырье для производства СУГ

Показатели Марка А Марка Б Марка В
Углеводородный состав, % масс. С 1 - С 2 , не более 3 5 не регламентируется
С 3 , не менее 15 не регламентируется не регламентируется
С 4 - С 5 , не менее 45 40 35
с 6 и выше, не более 11 25 30
Плотность при 20 о С, кг/м 3 515 - 525 525 - 535 535 и выше
Содержание сернистых соединений в пересчете на серу, % масс., не более 0,025 0,05 0,05
в том числе сероводорода, % масс., не более 0,003 0,003 0,003
Содержание взвешенной воды Отсутствие
Содержание щелочи Отсутствие
Внешний вид Бесцветная прозрачная жидкость.

Пары ШФЛУ образуют с воздухом взрывоопасные смеси с 1,3 - 9,5 % об. при 98 066 Па (1 ата.) 15 - 20 о С.

Таблица 2. Температуры самовоспламенения компонентов ШФЛУ, о С

Пропан (С 3 Н 8) Изо-бутан (С 4 Н 10) Н-бутан (С 4 Н 10) Изо-пентан (С 5 Н 12) Н-пентан (С 5 Н 12)
466 462 405 427 287

Предельно допустимая концентрация паров ШФЛУ в воздухе рабочей зоны составляет не более 300 мг/м 3 . ШФЛУ попадающее на кожу человека вызывает обморожение напоминающее ожог.

Таблица 3. Классификация СУГ в РФ: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический:

В зависимости от компонентного состава СУГ подразделяются на следующие марки:

Таблица 4. Свойства Параметры торговых марок: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический

Наименование показателя Пропан технический Пропан автомобильный Пропан-бутан автомобильный Пропан-бутан технический Бутан технический
1. Массовая доля компонентов
Сумма метана, этана и этилена Не нормируется
Сумма пропана и пропилена не менее 75 % масс. Не нормируется
в том числе пропана не нормируется не менее 85±10 % масс. не менее 50±10 % масс. не нормируется не нормируется
Сумма бутанов и бутиленов не нормируется не нормируется не нормируется не более 60 % масс. не менее 60 % масс.
Сумма непредельных углеводородов не нормируется не более 6 % масс. не более 6 % масс. не нормируется не нормируется
2. Доля жидкого остатка при 20 о С не более 0,7 % об. не более 0,7 % об. не более 1,6 % об. не более 1,6 % об. не более 1,8 % об.
3. Давление насыщенных паров не менее 0,16 МПа

(при минус 20 о С)

не менее 0,07 МПа

(при минус 30 о С)

не более 1,6 МПа

(при плюс 45 о С)

не нормируется не нормируется
4. Массовая доля сероводорода и меркаптановой серы
в том числе сероводорода :
не более 0,013 % масс. не более 0,001 % масс. не более 0,001 % масс. не более 0,013 % масс. не более 0,013 % масс.
не более 0,003 % масс.
5. Содержание свободной воды отсутствие
6. Интенсивность запаха, баллы не менее 3

Сжиженные углеводородные газы пожаро- и взрывоопасны, малотоксичны, имеют специфический характерный запах углеводородов, по степени воздействия на организм относятся к веществам 4-го класса опасности. СУГ в воздухе рабочей зоны (в пересчете на углерод) предельных углеводородов (пропан, бутан) — 300 мг/м 3 , непредельных углеводородов (пропилен, бутилен) — 100 мг/м 3 . СУГ образуют с воздухом при концентрации паров пропана от 2,3 до 9,5 %, нормального бутана от 1,8 до 9,1 % (по объёму), при давлении 0,1 МПа и температуре 15 — 20 о С. Температура самовоспламенения пропана в воздухе составляет 470 о С, нормального бутана — 405 о С.

Таблица 4. Физические характеристики: Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Показатель Метан Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Химическая формула СН 4 С 2 Н 6 С 2 Н 4 С 3 Н 8 С 3 Н 6 С 4 Н 10 С 4 Н 10 С 4 Н 8 С 4 Н 8 С 5 Н 12
Молекулярная масса, кг/кмоль 16,043 30,068 28,054 44,097 42,081 58,124 58,124 56,108 56,104 72,146
Молекулярный объем, м 3 /кмоль 22,38 22,174 22,263 21,997 21,974 21,50 21,743 22,442 22,442 20,87
Плотность газовой фазы, кг/м 3 , при 0 о С 0,7168 1,356 1,260 2,0037 1,9149 2,7023 2,685 2,55 2,5022 3,457
Плотность газовой фазы, кг/м 3 , при 20 о 0,668 1,263 1,174 1,872 1,784 2,519 2,486 2,329 2,329 3,221
Плотность жидкой фазы, кг/м 3 , при 0 о 416 546 566 528 609 601 582 646 646 6455
Температура кипения, при 101,3 кПа минус 161 минус 88,6 минус 104 минус 42,1 минус 47,7 минус 0,5 минус 11,73 минус 6,9 3,72 36,07
Низшая теплота сгорания, МДж/м 3 35,76 63,65 59,53 91,14 86,49 118,53 118,23 113,83 113,83 146,18
Высшая теплота сгорания, МДж/м 3 40,16 69,69 63,04 99,17 91,95 128,5 128,28 121,4 121,4 158
Температура воспламенения, о С 545-800 530-694 510-543 504-588 455-550 430-569 490-570 440-500 400-440 284-510
Октановое число 110 125 100 125 115 91,20 99,35 80,30 87,50 64,45
Теоретически необходимое количество воздуха

для горения, м 3 /м 3

3,52 16,66 14,28 23,8 22,42 30,94 30,94 28,56 28,56 38,08

Таблица 5. Критические параметры (температура и давление) газов: Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Газы могут быть превращены в жидкое состояние при сжатии, если температура при этом не превышает определенного значения, характерного для каждого однородного газа. Температура при которой данный газ не может быть сжижен никаким повышением давления, называется критической температурой. Давление, необходимое для сжижения газа при этой критической температуре, называется критическим давлением.

Показатель Метан Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Критическая температура, о С минус 82,5 32,3 9,9 96,84 91,94 152,01 134,98 144,4 155 196,6
Критическое давление, МПа 4,58 4,82 5,033 4,21 4,54 3,747 3,6 3,945 4,10 3,331

Таблица 6. Упругость насыщенных паров МПа, Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Упругостью насыщенных паров сжиженных газов называется давление, при котором жидкость находится в равновесном состоянии со своей газовой фазой. При такой двухфазной системе не происходит ни конденсации паров ни испарения жидкости. Каждому компоненту СУГ при определенной температуре соответствует определенная упругость паров, возрастающая с ростом температуры.

Температура, о С Этан Пропан Изобутан н-Бутан н-Пентан Этилен Пропилен н-Бутилен Изобутилен
минус 50 0,553 0,07 1,047 0,100 0,070 0,073
минус 45 0,655 0,088 1,228 0,123 0,086 0,089
минус 40 0,771 0,109 1,432 0,150 0,105 0,108
минус 35 0,902 0,134 1,660 0,181 0,127 0,130
минус 30 1,050 0,164 1,912 0,216 0,152 0,155
минус 25 1,215 0,197 2,192 0,259 0,182 0,184
минус 20 1,400 0,236 2,498 0,308 0,215 0,217
минус 15 1,604 0,285 0,088 0,056 2,833 0,362 0,252 0,255
минус 10 1,831 0,338 0,107 0,0680 3,199 0,423 0,295 0,297
минус 5 2,081 0,399 0,128 0,084 3,596 0,497 0,343 0,345
0 2,355 0,466 0,153 0,102 0,024 4,025 0,575 0,396 0,399
плюс 5 2,555 0,543 0,182 0,123 0,030 4,488 0,665 0,456 0,458
плюс 10 2,982 0,629 0,215 0,146 0,037 5,000 0,764 0,522 0,524
плюс 15 3,336 0,725 0,252 0,174 0,046 0,874 0,594 0,598
плюс 20 3,721 0,833 0,294 0,205 0,058 1,020 0,688 0,613
плюс 25 4,137 0,951 0,341 0,240 0,067 1,132 0,694 0,678
плюс 30 4,460 1,080 0,394 0,280 0,081 1,280 0,856 0,864
плюс 35 4,889 1,226 0,452 0,324 0,096 1,444 0,960 0,969
плюс 40 1,382 0,513 0,374 0,114 1,623 1,072 1,084
плюс 45 1,552 0,590 0,429 0,134 1,817 1,193 1,206
плюс 50 1,740 0,670 0,490 0,157 2,028 1,323 1,344
плюс 55 1,943 0,759 0,557 0,183 2,257 1,464 1,489
плюс 60 2,162 0,853 0,631 0,212 2,505 1,588 1,645

Таблица 6. Зависимость плотности от температуры: Пропан, Изобутан, н-Бутан

Температура, о С Пропан Изобутан н-Бутан
Удельный объём Плотность Удельный объём Плотность Удельный объём Плотность
Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3 Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3 Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3
минус 60 1,650 0,901 0,606 1,11
минус 55 1,672 0,735 0,598 1,36
минус 50 1,686 0,552 0,593 1,810
минус 45 1,704 0,483 0,587 2,07
минус 40 1,721 0,383 0,581 2,610
минус 35 1,739 0,308 0,575 3,250
минус 30 1,770 0,258 0,565 3,870 1,616 0,671 0,619 1,490
минус 25 1,789 0,216 0,559 4,620 1,639 0,606 0,610 1,650
минус 20 1,808 0,1825 0,553 5,480 1,650 0,510 0,606 1,960
минус 15 1,825 0,156 0,548 6,400 1,667 0,400 0,600 2,500 1,626 0,624 0,615 1,602
минус 10 1,845 0,132 0,542 7,570 1,684 0,329 0,594 3,040 1,635 0,514 0,612 1,947
минус 5 1,869 0,110 0,535 9,050 1,701 0,279 0,588 3,590 1,653 0,476 0,605 2,100
0 1,894 0,097 0,528 10,340 1,718 0,232 0,582 4,310 1,664 0,355 0,601 2,820
плюс 5 1,919 0,084 0,521 11,900 1,742 0,197 0,574 5,070 1,678 0,299 0,596 3,350
плюс 10 1,946 0,074 0,514 13,600 1,756 0,169 0,5694 5,920 1,694 0,254 0,5902 3,94
плюс 15 1,972 0,064 0,507 15,51 1,770 0,144 0,565 6,950 1,715 0,215 0,583 4,650
плюс 20 2,004 0,056 0,499 17,740 1,794 0,126 0,5573 7,940 1,727 0,186 0,5709 5,390
плюс 25 2,041 0,0496 0,490 20,150 1,815 0,109 0,5511 9,210 1,745 0,162 0,5732 6,180
плюс 30 2,070 0,0439 0,483 22,800 1,836 0,087 0,5448 11,50 1,763 0,139 0,5673 7,190
плюс 35 2,110 0,0395 0,474 25,30 1,852 0,077 0,540 13,00 1,779 0,122 0,562 8,170
плюс 40 2,155 0,035 0,464 28,60 1,873 0,068 0,534 14,700 1,801 0,107 0,5552 9,334
плюс 45 2,217 0,029 0,451 34,50 1,898 0,060 0,527 16,800 1,821 0,0946 0,549 10,571
плюс 50 2,242 0,027 0,446 36,800 1,9298 0,053 0,5182 18,940 1,843 0,0826 0,5426 12,10
плюс 55 2,288 0,0249 0,437 40,220 1,949 0,049 0,513 20,560 1,866 0,0808 0,536 12,380
плюс 60 2,304 0,0224 0,434 44,60 1,980 0,041 0,505 24,200 1,880 0,0643 0,532 15,400

Наиболее распространенным является использование СУГ в качестве топлива в двигателях внутреннего сгорания. Обычно для этого используется смесь пропан-бутан. В некоторых странах СУГ использовались с 1940 года как альтернативное топливо для двигателей с искровым зажиганием. СУГ являются третьим наиболее широко используемым моторным топливом в мире. В 2008 более 13 миллионов автомобилей по всему миру работали на пропане. Более 20 млн тонн СУГ используются ежегодно в качестве моторного топлива.

Использование СУГ в качестве топлива в промышленных и коммунально-бытовых нагревательных аппаратах позволяет осуществлять регулирование процесса горения в широком диапазоне, а возможность хранения СУГ в резервуарах делает его более предпочтительным по сравнению с природным газом в случае использования СУГ на автономных узлах теплоснабжения.

Таблица 7. Использование СУГ для производства продуктов для органического синтеза

Основное направление химической переработки СУГ — это термические и термокаталитические превращения. В первую очередь здесь подразумеваются процессы пиролиза и дегидрирования, приводящие к образованию ненасыщенных углеводородов — ацетилена, олефинов, диенов, которые широко применяются для производства высокомолекулярных соединений и кислородсодержащих продуктов. Это направление включает в себя также процесс производства сажи термическим разложением в газовой фазе, а также процесс производства ароматических углеводородов. Схема превращений углеводородных газов в конечные продукты представлена в таблице.

Продукты прямого превращения

углеводородных газов

Производное вещество Конечный продукт
первичное вторичное
Этилен Полиэтилен Полиэтиленовые пластмассы
Окись этилена Поверхностно-активные вещества
Этиленгликоль Полиэфирное волокно, антифриз и смолы
Этаноламины Промышленные растворители, моющие вещества, мыло
Хлорвинил Хлорполивинил Пластиковые трубы, пленки
Этанол Этиловый эфир, уксусная кислота Растворители, химические преобразователи
Ацетальдегид Уксусный ангидрид Ацетатная целлюлоза, аспирин
Нормальный бутан
Винилцетат Поливиниловый спирт Пластификаторы
Поливинилацетат Пластиковые пленки
Этилбензол Стирол Полистироловые пластмассы
Акриловая кислота Волокна, пластмассы
Пропиональдегид Пропанол Гербициды
Пропионовая кислота Консервирующие средства для зерна
Пропилен Акрилонитрил Адипонитрил Волокна (нейлон-66)
Полипропилен Пластичные пленки, волокна
Окись пропилена Пропиленкарбонат Полиуретановые пены
Полипропиленгликоль Специальные растворители
Аллиловый спирт Полиэфирные смолы
Изопропанол Изопропилацетат Растворители типографических красок
Ацетон Растворитель
Изопропилбензол Фенол Фенольные смолы
Акролеин Акрилаты Латексные покрытия
Аллилхлориды Глицероль Смазочные вещества
Нормальные и изомолярные альдегиды Нормальный бутанол Растворитель
Изобутанол Амидные смолы
Изопропилбензол
Номальные бутены Полибутены Смолы
Вторичный бутиловый спирт Метилэтиловый кетон Промышленные растворители, покрытия, связывающие вещества
Депарафинизирующие добавки к нефти
Изобутилен Изобутиленметиловый бутадиеновый сополимер
Бутиловая смола Пластмассовые трубы, герметики
Третичный бутиловый спирт Растворители, смолы
Метилбутиловый третичный эфир Повыситель октанового числа бензина
Метакролеин Метилметакрилат Чистые пластиковые листы
Бутадиен Стирилбутадиеновые полимеры Буна-каучуковая синтетическая резина
Адипонитрил Гексаметилендиамин Нейлон
Сульфолен Сульфолан Очиститель промышленного газа
Хлоропрен Синтетическая резина
Бензол Этилбензол Стирол Полистироловые пластмассы
Изопропилбензол Фенол Фенольные смолы
Нитробензол Анилин
Линейный алкилбензол Разлагающиеся под действием бактерий моющие вещества
Малеиновый ангидрид Модификаторы пластмасс
Циклогексан Капролактам Нейлон-6
Адипиновая кислота Нейлон-66
Толуол Бензол Этилбензол, стирол Полистироловые пластмассы
Изопропилбензол, фенол Фенольные смолы
Нитробензол, хлорбензол, анилин, фенол Красители, резина, фотохимикаты

Кроме перечисленного СУГ используют в качестве аэрозольного энергоносителя. Аэрозолем является смесь активного компонента (духов, воды, эмульгатора) с пропиленом. Это коллоидный раствор, в котором тонкодиспергированные (размером 10 — 15 мкм) жидкие или твердые вещества взвешены в газовой или жидкой, легкоиспаряющейся фазе сжиженного углеводородного газа. Дисперсная фаза — активный компонент, из-за которого и вводят пропеллент в аэрозольные системы, применяющиеся для распыления духов, туалетной воды, полирующих веществ и др.

Основным компонентом автономной системы газоснабжения является пропан-бутановая смесь. При этом многие не понимают, зачем смешивают пропан и бутан , ведь каждый газ может использоваться как самостоятельное топливо. Тем не менее, в некоторых регионах России данные углеводороды нельзя применять в чистом виде для газификации объектов, что связано с их физико-химическими свойствами и климатическим фактором.

Свойства СУГ

Чтобы понять, зачем смешивают пропан с бутаном, необходимо знать особенности каждого компонента, в том числе их взаимодействие с внешней средой. С точки зрения молекулярного строения они относятся к углеводородным соединениям, которые можно хранить в жидком состоянии, что значительно упрощает транспортировку и эксплуатацию.

Одним из условий образования жидкого газа является высокое давление, поэтому его хранят в специальных резервуарах под давлением 16 бар. Второе условие для перехода углеводородных газов из одного состояния в другое – внешняя температура воздуха. Пропан закипает при -43°С, тогда как преобразование из жидкого в газообразное состояние у бутана происходит при -0,5°С, что является основным отличием данных углеводородов.

Таблица с некоторыми другими свойствами данных газов

Дополнительную информацию о свойствах сжиженного углеводородного газа можно прочитать в статье: пропан-бутан для газгольдера – свойства и особенности применения .

Зачем смешивают пропан и бутан в автономной системе газоснабжения

Учитывая физико-химические характеристики насыщенных углеводородов, их применение во многом зависит от климатических условий. Сжиженный бутан в чистом виде не будет работать при отрицательных температурах. Тогда как применение чистого пропана противопоказано в условиях жаркого климата, поскольку высокая температура вызывает чрезмерное повышение давления в газовом резервуаре.

Так как для каждого региона нецелесообразно производить отдельную марку газа, с целью унификации ГОСТом предусмотрена смесь с определенным содержанием двух компонентов в рамках установленных норм. Согласно ГОСТ 20448-90 максимальное содержание бутана в данной смеси не должно превышать 60%, при этом для северных регионов и в зимнее время года доля пропана должно быть не меньше 75%.

Процентное соотношение газов в разное время года

Кстати, больше статей нашего блога о газификации — в этом разделе.

Технологический фактор

Помимо климатического фактора, существует технологическое обоснование того, зачем смешивают пропан и бутан. На нефтеперерабатывающих предприятиях в процессе переработки попутных газов пропан и бутан производятся в разных количествах. Поэтому для оптимизации сырьевой политики данные углеводороды смешивают между собой в определенной пропорции. При этом, независимо от технологии изготовления сжиженного углеводородного газа, процентное содержание двух составляющих должно находиться в рамках, установленных ГОСТом.

Ценовая политика при заправке СУГ

Стоимость пропана-бутана зависит от содержания в нем первого (более дорогого) компонента. Поэтому неудивительно, что «зимняя» смесь для заправки автономной системы газоснабжения будет дороже «летней». Однако, если какая-либо компания предлагает заправку по цене, значительно уступающей среднерыночной, тогда ее представителю необходимо задать следующие вопросы:

  • Почему стоимость СУГ такая низкая?
  • Какое соотношение пропана-бутана?
  • Как этот состав будет работать зимой?
  • Есть ли в наличии соответствующая техническая документация?
  • Можно ли обратиться в компанию при возникновении проблем?

Будьте осторожны! Дешевая смесь может затем обойтись гораздо дороже.

Некоторые компании хитрят, предоставляя «зимнюю» смесь, которая не соответствует ГОСТу. Поэтому невысокая стоимость СУГ должна, как минимум, насторожить покупателя.

Чтобы избежать проблем с газификацией своего дома, обращайтесь в компанию «Промтехгаз», которая уже доказала свой профессионализм и надежность. О чем свидетельствуют хорошие позиции на рынке, и отсутствие отрицательных отзывов от клиентов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Углеводородные газы

1. Состав сжиженных углеводородных газов

Под СУГ понимают такие индивидуальные углеводороды или их смеси, которые при норм. условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления без изменения температуры или незначительном понижении температуры при атмосферном давлении переходит в жидкое состояние.

При нормальных условиях из предельных углеводородов (C n H 2 n +2) газами являются лишь метан, этан, пропан, и бутан. При О 0 С этан конденсируется в жидкость при повышении давления до 3 Мпа. Пропан до 0,47 Мпа, Н-бутан до 0,116 МПа, Изобутан до 0,16 МПа. Рассмотрим, какие углеводороды переходят в жидкое состояние при сравнительно небольшом понижении температуры и атмосферном давлении 4подходящей для практического применения являются пропан и бутан. На ряду с нормальными предельными углеводородами существуют изомерные соединения, отличающиеся характером расположения атомов углерода, а также некоторыми свойствами. Изомер бутана - изобутан.

Структура и ф-ла Н-бутана

СН 3 -СН 2 -СН 2 - СН 3

Изобутан:

Помимо предельных в состав СУГ встречаются также группа ненасыщ. Или непредельных углеводородов, характеризуются двойной или тройной связью между атомами углерода. Это этилен, пропилен, бутилен (нормальный и изомерный). Общая формула непредельных углеводородов с двойной связью С n Н 2 n . Этилен С2Н4 СН2=СН2. Для получения сжиженных углеводородных газов используется жирные природные газы, т.е. газы из нефтяных и конденсатных месторождений, содержащих большое количество тяжелых углеводородов. На газоперерабатывающих заводах их этих газов выделяются пропан-бутановую фракцию и газовый бензин(С5Н12). Технический пропан и бутан а также их смеси представляют собой сжиженный газ, используемый для газоснабжения потребителей.

Технические газы отличаются от чистых содержанием небольших количеств углеводорода и наличием примеси. Для технического пропана содержание С3Н8+С3Н6 (пропилен) д.б. не <93%. Содержание С2Н6 +С2Н4 (этилен) не > 4%. Содержание С4Н10+С4Н8 не >3%.

Для технического бутана: С4Н10+С4Н8 д.б. не <93%. С3Н8 +С3Н6 не> 4%. С5Н12+С5Н10 не >3%.

Для смеси тех. бутана и пропана содержание: С3Н8+С3Н6, С4Н10+С4Н8 д.б. не < 93%. С2Н6 +С2Н4 не> 4%. С5Н12+С5Н10 не >3%.

2. Технические сжиженные газы. Марки СУГ

Состав сжиженных газов, применяемых в газоснабжении выбираются с учетом климатических условий, где он используется. И определяется требованиями ГОСТ 20448 «Газы углеводородные сжиженные топливные для коммунально-бытового потребления. Технические условия». Состав подбирается так, чтобы при низких температурах зимой упругость паров смеси была достаточной для нормальной работы регуляторов. А при высоких температурах летом не превышала мах давления, на которые рассчитаны баллоны и резервуары для СУГ. Согласно ГОСТ давление насыщенных паров смеси д.б. не менее 0,16 МПа при t=+45 0 C. Если сжиженный пропан может применяться при температурах от -35 до +45, то бутан в условиях с естественным испарением не м.б. использован при темературах ниже 0, хотя при t >0 он имеет значительное преимущество перед пропаном. Поэтому подбором состава сжиженного газа можно получать желаемые свойства.

ГОСТ на СУГ устанавливают 3 марки сжиженного газа:

1) Смесь пропана и бутана технических зимняя СПБТЗ

2) Смесь пропана и бутана технических летняя СПБТЛ

3) Бутан технический

Деление смеси пропана и бутана на зимнюю и летнюю марки связано с наружными t-ми, определяющими упругость нас. паров сжиженных газов, находящихся в баллонах или подземных резервуарах.

Зимой в составе смеси д.б. больше пропана и пропилена, летом количество их м.б. уменьшено. С той же целью лимитируются мах содержание бутана и бутилена в смеси, т.к. при низких температурах они имеют малую упругость паров.

С учетом оптимальной упругости насыщенных паров ГОСТ предусматривает содержание пропана и пропилена в зимней марке не <75% по массе. А в летней марке и бутане техническим содержанием этих компонентов не нормируется. Сумма бутанов и бутиленов в зимней марке не нормируется, в летней не >60%, в бутане техническом не <60% по массе. Ограничение в составе сжиженных газов содержания лёгких компонентов (этан, этилен) связано с тем, что наличие значительного количества этих углеводородов приводит к резкому увеличению упругости паров. Например, при 35 0 C упругость насыщенных паров этана достигает 4,9 МПа. В то же время наличие незначительного количества легких компонентов в сжиженном газе повышает общее давление насыщенных паров смеси, что обеспечивает в зимнее время нормальное газоснабжение потребителей.

Наличие значительного количества пентана также недопустимо, т.к. это приводит к резкому снижению давления насыщенных паров и повышению точки росы (t-ра конденсации пентана около 3 0 C).

3. Свойство СУГ

Возможны 3 состояния сжиженного газа, в котором находятся при хранении и использовании:

1) В виде жидкости (жидкая фаза)

2) Пар (паровая фаза), т.е. насыщенные пары, находящиеся совместно с жидкостью в резервуаре или баллоне.

3) Газа (когда давление в паровой фазе ниже давления насыщенных паров при данной температуре).

Свойства сжиженных газов легко переходят из одного состояния в другое, делает их особенно ценным источником газоснабжения, т.к. транспортировать и хранить их можно в жидком виде, а сжигать в виде газа. Т.о. при транспортировке и хранении используется преимущественно жидкие фазы, а при сжигании газообразные.

Упругость насыщенных паров газа - это важнейший параметр, по которому определяется рабочее давление в баллонах и резервуарах. Давление и температура сжиженных газов строго соответствует друг другу.

Упругость насыщенных паров СУГ изменяется пропорционально температуре жидкой фазы и является величиной строго определенной для данной температуры.

Во все уравнения, связывающие физические параметры газообразного или жидкого вещества входят абсолютное давление и температура. А в уравнения для технических расчетов прочности стенок баллонов, резервуаров - избыточное давление.

В газообразный составе СУГ тяжелее воздуха в 1,5-2,1 раза. В жидком состоянии они почти в 2 раза легче воды.

Скрытая теплота парообразование весьма незначительная (приблизительно 116кВт/кг), поэтому расход теплоты на испарение сжиженного газа составляет 0,7% от потенциально содержащейся в них тепловой энергии. Вязкость очень мала, что обеспечивает транспортировку СУГ по трубопроводом, но то же время благоприятствует утечкам. Для них характерны низкие пределы воспламенения воздуха (2,3% для пропана, 1,7% для бутана).

Разница между верхним и нижним пределами незначительна, поэтому при их сжимании допускается применение отношения воздух-сжиженный газ. Обладает невысокими t-ми воспламенения по сравнению с большинством горючих газов (510 0 C для пропана и 490 0 C для бутана). Возможно образование конденсата при снижении t до точки росы или при повышении давления. Сжиженные газы характеризуются низкой t-рой кипения и поэтому при испарении во время внезапного выхода из трубопровода или резервуара в атмосферу охлаждается до отрицательной t-ры. Жидкая фаза попадая на незащищенную кожу человека может привести к обморожению. По характеру воздействия оно напоминает ожог.

В отличии от большинства жидкостей, которые при изменении t-ры незначительно изменяют свой объём, жидкая фаза СУГ довольно резко увеличивает свой объем при повышении t-ры (в 16 раз больше чем вода).

Сжимаемость сжиженных газов по сравнению с другими жидкостями весьма значительна. Если сжимаемость воды принять за единицу, то сжимаемость нефти 1,56, а пропана 15. Если жидкая фаза занимает весь объем резервуара, то при повышении t-ры ей расширяться некуда, и она начинает сжиматься. Давление в резервуаре повышается. Повышение давления д.б. не больше допустимого расчетного, иначе возможна авария. Поэтому при заполнении резервуаров и баллонов предусматривается оставлять паровую подушку, т.е. заполнять их не полностью. Величина паровой подушки для подземных резервуаров составляет 10%, для подземных и баллонов 15%.

Сжиженные газы имеют более высокую, чем природные газы, объемную теплоту сгорания (приближенно в 3 раза выше).

Сжиженные газы нетоксичны, но низкие пределы воспламенения и медленная диффузия в атмосферу в сочетании отсутствия у них запаха, цвета и вкуса (как в жидком, так и в газообразном виде) диктует необходимость их одоризации.

4. Достоинства и недостатки СУГ

Как топливо сжиженные газы обладают всеми достоинствами природных газов. Кроме того для них можно отметить дополнительно:

1. Возможность создать у потребителя необходимый запас газа в жидком виде.

2. Простота транспортировки

3. Выделение наибольшего количества теплоты при сжигании

4. Отсутствие в составе СУГ коррозионно-активных веществ

5. Доступность использования в любом виде и в любых условиях

Недостатки СУГ:

1. Переменность состава и теплоты сгорания при естественном испарении

2. Малые значения низшей границы предела воспламенения

3. Плотность пропана и бутана больше плотности воздуха, что при утечках вызывает скопление СУГ в низких местах и создаются взрывоопасные ситуации

4. Низкая температура воспламенения

5. Возможность обморожения обслуживающего персонала при аварийных ситуациях

6. Большой коэффициент объёмного расширения

5. Диаграммы состояния сжиженных газов

Для расчёта процессов и оборудования необходимо знать взаимосвязь различных параметров СУГ с достаточной точностью. Это можно сделать по диаграммам состояния. По ним можно определить:

1. Упругость паров при данной температуре

2. Давление перегретых паров при данных условиях

3. Удельный объём и плотность жидкой, паровой и газовой фазы; их энтальпию

4. Степень сухости и влажности паров

5. Теплоту парообразования

6. Работу сжатия компрессором и повышения температуры при сжатии

7. Эффект охлаждения жидкости и газа при снижении давления (дросселировании)

8. Скорость истечения газа из сопел газогорелочных устройств

Диаграмма состояния строится на сетке из горизонтальных линий постоянных абсолютных давлений и вертикальных линий постоянных энтальпий. На сетку диаграммы наносят следующие точки и линии.

1) Точка «К» критического состояния данного углеводорода по критическим давлению и температуре.

2) Пограничная кривая ПКЖ, проходящая через точку критического состояния и делящая диаграмму на 3 зоны:

I. Характеризует жидкую фазу

II. Парожидкостная фаза

III. Газовая фаза

Ветвь ЖК характеризует состояние насыщение жидкости при различных давлениях, а ветвь КП состояние насыщенного пара при этих давлениях.

3) Кривые сухости пара, которые выходят из критической точки К -- КХ, КХ"

4) Линии постоянной температуры изображаются ломаной ТЕМЛ с горизонтальным участком ЕМ (постоянное давление и температура при кипении жидкой фазы). Изотермы температур выше критической точки данного углеводорода изображается кривыми T"E"

5) Линии постоянных удельных объёмов (изохоры)

ОБ -- в области жидкой фазы

О"Б" -- в области парожидкостной фазы

Б"Б"" -- в области газовой фазы

Эти же линии соответствуют постоянной плотности

Точка О на пограничной кривой ЖК показывает удельный объём жидкой фазы.

Точка Б" на КП -- паровой фазы, находящейся в резервуарах или баллонах в эксплуатационных условиях

6) Линии постоянной энтропии AD, A"D" (адиабаты). Они используются при определении параметров углеводородов при сжатии их в компрессоре и при истечении из сопел газогорелочных устройств

Давление жидкой и паровой фазы в замкнутом объёме при заданной температуре определяется по точке пересечения изотермы с одной из пограничных кривых КМ или КП.

Давление в точке пересечения М и Е будет искомым. Если изотерма не пересекает пограничную кривую то это значит что при данной температуре газ не перейдёт в жидкое состояние, а давление его можно определить если известны его удельный объём, например изобара в точке пересечения изотермы T"E" и изохоры Б"Б”.

Удельный объём насыщенной жидкости или пара можно определить по температуре или давлению в точке пересечения заданной изобары или изотермы с пограничными кривыми жидкости КМ или пара КП. Удельный объём газовой определяется по давлению и температуре в точке пересечения соответствующих изобар и изотерм.

Энтальпия жидкой паровой и газовой фазы определяется на оси абсцисс при заданных значениях давления и температуры в точке пересечения изобар с пограничными кривыми, линиями постоянной сухости или изотермами.

Теплота парообразования при заданном давлении определяется как разность энтальпий в точке Е и М заданной изобары с общими пограничными кривыми

Степень сухости пара Х определяется Л изобары с кривой постоянной сухости пара при данной энтальпии.

При расчёте процессов на диаграмму наносят вспомогательные линии. Так при дросселировании жидкой фазы от Р нач до Р кон наносят вертикальную линию МС (процесс идёт без подвода или отвода теплоты). Температура конца дросселирования определяется в точке С. Пересечение кривой сухости пара с изобарой Р кон показывает какое количество пара образовалось при дросселировании. Сжатие газа изображается на диаграмме адиабатами. Температура газа в конце сжатия определяется изотермой, проходящей через точку D". Теоретическая работа сжатия 1кг газа определяется разностью теплосодержаний в точках D" и A".

Действительная работа сжатия будет несколько больше и определяется по формуле

Адиабатный КПД процесса сжатия (0,85-0,9)

6. Смеси газов и жидкостей. Пересчёт состава смесей

сжиженный углеводородный газоснабжение

Состав сжиженного газа в жидкой и паровой фазах может выражаться массовыми g i , объёмными y i и малярными долями для газов r i , для жидкостей Х.

Где m i -- масса, кг

V i -- объём, м 3

N i -- число молей i-го компонента в смеси.

Для газовых (идеальных смесей) мольные и объёмные доли равны это следует из закона Авогадро

Пересчёт состава сжиженного газа из одного вида в другой производится следующим образом:

1. Для жидких смесей:

А) при известном массовом составе компонентов, объёмный и молярный состав определяется по формулам

Где с i и M i -- соответственно плотность и молярная масса

Б) при заданном объёмном составе, массовый и молярный находятся по формулам

В) при известном молярном составе, массовый и объёмный определяются по формулам

Г) Для газовых смесей пересчёт из молярного в массовый производится по (5), а из массового в объёмный и мольный по (1) и (2).

7. Определение свойств СУГ

При известном составе сжиженного газа, давление смеси можно рассчитать по формулам:

Плотность газовой смеси заданного состава определяется:

Мольная доля i-ого компонента смеси

Плотность i-ого компонента смеси, кг/м 3

Она находится по таблице или рассчитывается по закону Авогадро:

Где - молекулярная масса i-ого компонента, кг/кмоль

Молекулярный объем i-ого компонента, м 3 /кмоль

Средняя плотность жидкой смеси при известном массовом составе определяется по формуле:

При известном молекулярном составе:

Где - плотность i-ого компонента входящего в жидкую смесь в жидкой фазе, кг/л

Плотность газовой смеси при повышенном давление находится из уравнения состояния для реальных газов.

Где - абсолютное давление (МПа) и t-ра смеси.

Газовая постоянная смеси, (Дж/кг К)

z-коэффициент сжимаемости, учитывающий отклонение реальных газов от з-нов идеальных газов.

Газовая постоянная смеси рассчитывается по универсальной газовой постоянной и по молекулярной массе смеси.

Коэффициент сжимаемости определяется по графику в зависимости от приведённых параметров (давление и температура) газа.

Среднее критическое давление и температура для смеси газов определяется по его составу.

Объем газа, получается при испарение смеси СУГ, м.б. найден по формуле:

Масса i-ого компонента смеси, кг

Молекулярная масса i-ого компонента смеси, кг/кмоль

V Mi -молекулярный объем i-ого компонента

Для подсчета низшей объемной температуры сгорания смеси СУГ используется следующая зависимость

Низшая объемная теплота сгорания i-ого компонента, кДж/м 3

Низшая массовая температура сгорания

Пределы воспламенения смеси СУГ, не содержащих балластных примесей, определяются:

L см - нижний или верхний предел воспламенения смеси газов.

Нижний или верхний предел воспламенения i-ого компонента.

8. Схемы перелива СУГ. Перемещение СУГ за счет разности уровней

Существует ряд методов перемещения сжиженного газа из ж/д или автоцистерн в стационарные емкости. И наоборот, наполнения транспортных емкостей и баллонов из стационарных хранилищ. Свойства СУГ, являются кипящими жидкостями, с малой плотностью и температурой парообразования обусловливают специфичность для перемещения метода схем и оборудования.

СУГ перемещают:

За счет разности уровней

Сжатием газов

С помощью подогрева или охлаждения

При помощи компрессора

При помощи насоса

Взаимным вытеснением жидкости

За счет разности уровней

Использование гидростатического напора применяется при заполнении подземных резервуаров из железнодорожных и автоцистерн, а так же при разливе СУГ в баллоны, если позволяет рельеф местности. Что бы слить цистерны в резервуар, необходимо соединить их паровые и жидкостные фазы.

В сообщающихся сосудах жидкость устанавливается на одном уровне, поэтому жидкая фаза перетечет в нижестоящий резервуар.

Для создания достаточной скорости слива, при одинаковых температуре и давлении, в цистерне и резервуаре необходимо, что бы за счет гидростатического напора создавалась разность давлений не менее 0,7-0,1.

Минимальная необходимая величина гидростатического напора в этих условиях будет 14-20 метров жидкости.

В зимнее время цистерна имеет более низкую температуру, чем резервуар т.е. P газа в цистерне будет меньше, чем в резервуаре.

Поэтому для слива разность уровней должна компенсировать эту разность давлений

Где - давление газа в резервуаре, Па

Давление газа в цистерне

Плотность жидкой фазы СУГ, кг/м 3

Летом, в начальный момент слива, возможно расположение цистерн ниже резервуара. Но здесь скажется влияние температуры в резервуаре от более нагретой жидкости из цистерны, и величина перепада давления упадет примерно до 0. Слив прекратится. Поэтому летом, при сливе, паровые фазы автоцистерны и резервуара соединять не нужно.

«+» метода:

1. Простота схемы

2. Отсутствие механических агрегатов

3. Надежность работы всех узлов

4. Готовность схемы к работе в любой момент, независимо от наличия постороннего источника энергии

«-» метода:

1. Невозможность использования местности с гористым рельефом.

2. Большая продолжительность процесса.

3. Большие потери газа при отправлении его обратно в виде паров в слитых цистернах.

9. Газонаполнительные станции

ГНС являются базой снабжения систем газами и поставки потребителям сжиженных газов, поступающих с газобензиновых заводов.

На ГНС выполняются след. работы:

· -приём сжиженных газов от поставщика

· -слив сж. газов в свои хранилища

· -хранение СУГ в надземных, подземных или изотермических резервуарах, в баллонах или подземных пустотах.

· -слив неиспарившихся остатков из баллона и сж. газа из баллонов, имеющих к-л неисправности

· -разлив сж. газа в баллоны, передвижные резервуары и автоцистерны

· -приём пустых и выдача наполненных баллонов

· -транспортировка сж. газов по внутренней сети трубопровод

· -ремонт баллонов и их переосвидетельствование

Техническое обслуживание и ремонт оборудования на станции

В ряде случаев на ГНС производится:

· -заправка автомобилей, работающих на сж. газе из автозаправочной колонки

· -смешение паров газа с воздухом или низкокалорийными газами

· -выдача паров сж. газа газовоздушных и газовых смесей в гор. распределительные системы

Для выполнения этих операций на ГНС имеются след. подразделения и цеха:

· -сливная эстакада ж/д ветки или ввод тр-да с отключающими устройствами

· -база хранения СУГ, состоящая из надземных или подземных резервуаров, работающих под давлением, изотермич. резервуаров

· -насосно-компрессионый цех для слива СУГ их ж/д цистерн в хранилища и подача его для наполнения

· -цех для наполнения баллонов и слива из них неиспарившихся тяжёлых остатков

· -склад суточного запаса пустых и заполненных баллонов

· -колонки для заполнения автоцистерн

· -коммуникации жидкой и паровой фаз, связывающие все отделения ГНС и обеспечивающих их перемещение.

ГНС следует размещать вне населённых пунктов с подветренной стороны господствующих ветров, при этом следует соблюдать требуемые расстояния между ГНС и остальными сооружениями.

В зависимости от объёма хранилищ, способа установки резервуаров эти расстояния от 40 до 300 м.

Литература

1. Абрамочкин Е.Г.: Современная оптика гауссовых пучков. - М.: ФИЗМАТЛИТ, 2010

2. Алексеев Г.В.: Оптимизация в стационарных задачах тепломассопереноса и магнитной гидродинамики. - М.: Научный мир, 2010

3. Амусья М.Я.: Поглощение фотонов, рассеяние электронов, распад вакансий. - СПб.: Наука, 2010

4. Антонов В.Ф.: Физика и биофизика. - М.: ГЭОТАР-Медиа, 2010

5. Банков С.Е.: Электромагнитные кристаллы. - М.: ФИЗМАТЛИТ, 2010

6. Барабанов А.Л.: Симметрии и спин-угловые корреляции в реакциях и распадах. - М.: ФИЗМАТЛИТ, 2010

7. Белоконь А.В.: Математическое моделирование необратимых процессов поляризации. - М.: ФИЗМАТЛИТ, 2010

8. Бобошина С.Б.: Курс общей физики. - М.: Дрофа, 2010

9. Бройер Х.-П: Теория открытых квантовых систем. - Ижевск: Институт компьютерных исследований, 2010

10. Виноградов Е.А.: Термостимулированные электромагнитные поля твердых тел. - М.: ФИЗМАТЛИТ, 2010

11. Вирченко Ю.П.: Случайные множества с марковскими измельчениями в одномерном пространстве погружения. - Белгород: БелГУ, 2010

12. Г.П. Берман и др.; пер. с англ. Е.В. Бондаревой; под науч. ред. С.В. Капельницкого: Магнитно-резонансная силовая микроскопия и односпиновые измерения. - Ижевск: Ижевский институт компьютерных исследований, 2010

13. Голенищев-Кутузов А.В.: Фотонные и фононные кристаллы. - М.: ФИЗМАТЛИТ, 2010

14. Дьячков П.Н.: Электронные свойства и применение нанотрубок. - М.: БИНОМ. Лаборатория знаний, 2010

Размещено на Allbest.ru

Подобные документы

    Природа явления, свойства, способы получения и использование сжиженных газов. Безопасный метода Линде, эффективный метод Клода, исследование свойств при нулевой температуре с помощью сжиженных газов. Применение газов в промышленности, медицине.

    реферат , добавлен 23.04.2011

    Химический состав и формирование химического состава газов в газовых и нефтяных залежах. Классификация газов: по условиям нахождения в природе, по генезису газов, по химическому составу, по их ценности. Методы определения состава природных газов.

    курсовая работа , добавлен 30.10.2011

    Термодинамика - учение об энергии и фундаментальная общеинженерная наука. Термодинамическая система и параметры ее состояния: внутренняя энергия, энтальпия. Закон сохранения энергии. Смеси идеальных газов. Задачи по тематике для самостоятельного решения.

    дипломная работа , добавлен 25.01.2009

    Физика низких температур. Низкотемпературные проблемы и возможности сжижения газов. Интенсивность тепловых движений. Свойства газов и жидкостей при низких температурах. Получение низких температур. Сверхтекучесть и другие свойства жидкого гелия.

    курсовая работа , добавлен 16.08.2012

    Изучение теплопроводности как физической величины, определяющей показатель переноса тепла структурными частицами вещества в процессе теплового движения. Способы переноса тепла: конвекция, излучение, радиация. Параметры теплопроводности жидкостей и газов.

    курсовая работа , добавлен 01.12.2010

    Основы теории диффузионного и кинетического горения. Анализ инновационных разработок в области горения. Расчет температуры горения газов. Пределы воспламенения и давления при взрыве газов. Проблемы устойчивости горения газов и методы их решения.

    курсовая работа , добавлен 08.12.2014

    Обзор методов очистки дымовых газов тепловых электростанций. Проведение реконструкции установки очистки дымовых газов котлоагрегата ТП-90 энергоблока 150 МВт в КТЦ-1 Приднепровской ТЭС. Расчет скруббера Вентури для очистки дымовых газов котла ТП-90.

    дипломная работа , добавлен 19.02.2015

    Особенности определения эксергии рабочего тела. Первый закон термодинамики. Круговой цикл тепловой машины. Параметры смеси газов. Конвективный и лучистый теплообмен. Температурный режим при пожаре в помещении. Изменяющиеся граничные условия 3 рода.

    контрольная работа , добавлен 19.05.2015

    Принцип действия и классификация машин для сжатия и перемещения газов. Степень сжатия, принципы и критерии ее измерения. Порядок составления индикаторной диаграммы. Объемный коэффициент полезного действия и производительность. Многоступенчатое сжатие.

    презентация , добавлен 28.09.2013

    Роль одномерного анализа при решении технических задач. Уравнения Бернулли для идеальной и реальной жидкостей. Выражение скорости звука через термодинамические параметры. Изоэнтропийное течение, критический расход. Сопло Лаваля и принцип его действия.

    сжиженные углеводородные газы - СУГ Сжиженные углеводородные смеси пропана, пропилена, бутанов и бутенов с примесями углеводородных и неуглеводородных компонентов, получаемые путем переработки природного газа и нефти, применяемые в качестве моторного топлива, для коммунально… …

    сжиженные углеводородные газы - 32 сжиженные углеводородные газы; СУГ: Сжиженные углеводородные смеси пропана, пропилена, бутанов и бутенов с примесями углеводородных и неуглеводородных компонентов, получаемые путем переработки природного газа и нефти, применяемые в качестве… …

    Объект, использующий сжиженные углеводородные газы - (СУГ), объект производственного и коммунально производственного назначения, обеспечивающий хранение и (или) реализацию СУГ, транспортировку СУГ по газопроводам до потребителя, а также использование его в качестве топлива на опасных… … Официальная терминология

    объект, использующий сжиженные и углеводородные газы (СУГ) - Объект производственного и коммунально производственного назначения, обеспечивающий хранение и (или) реализацию СУГ, транспортировку СУГ по газопроводам до потребителя, а также использование его в качестве топлива на опасных производственных… … Справочник технического переводчика

    Углеводородные газы, сопутствующие нефти и выделяющиеся при ее добыче на газонефтяных месторождениях. Эти газы находятся в нефти в растворенном виде и выделяются из нее вследствие снижения давления при подъеме нефти на пов сть земли. В… … Химическая энциклопедия

    Углеводородные газы, сопутствующие нефти и выделяющиеся из неё при сепарации. Количество газов (в м3), приходящееся на 1 т добытой нефти (т. н. газовый фактор), зависит от условий формирования и залегания нефтяных месторождений и может… … Большая советская энциклопедия

    Нефтяные газы смесь различных газообразных углеводородов, растворенных в нефти; они выделяются в процессе добычи и перегонки (это так называемые попутные газы, главным образом состоят из пропана и изомеров бутана). К нефтяным газам также… … Википедия

    Сжиженные углеводородные газы Сжиженный природный газ Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попа … Википедия

    газ - горючий природный газ по ГОСТ 5542 или сжиженные углеводородные газы (СУГ) по ГОСТ 27578 и ГОСТ 20448; Источник … Словарь-справочник терминов нормативно-технической документации

    Лукойл - (Lukoil) Компания Лукойл, история компании, добыча и продажи Компания Лукойл, история компании, добыча и продажи, акционеры и руководство Содержание Содержание Общая о ОАО «» История основание фирмы ОАО «Лукойл» Акционеры и руководство… … Энциклопедия инвестора