Преобразователь напряжения для питания варикапов. Экономичный преобразователь напряжения Для схемы "балансный модулятор на варикапах"

Предлагаю простую и надежную схему преобразователя напряжения для управления варикапами в различных конструкциях, который вырабатывает 20 В при питании от 9 В. Выбран вариант преобразователя с умножителем напряжения, поскольку он считается самым экономичным. Кроме того, он не создает помех радиоприему. На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным.

На диодах VD1...VD4 и конденсаторах С2...С5 собран умножитель напряжения. Резистор R5 и стабилитроны VD5, VD6 образуют параметрический стабилизатор напряжения. Конденсатор С6 на выходе является ВЧ-фильтром. Ток потребления преобразователя зависит от напряжения питания и количества варикапов, а также от их типа.

Устройство желательно заключить в экран для снижения помех от генератора. Правильно собранное устройство работает сразу и некритично к номиналам деталей.


Обсудить на форуме

На момент добавления Преобразователь напряжения для варикапов все ссылки были рабочие.
Все публикации статей, книг и журналов, представлены на этом сайте, исключительно для ознакомления,
авторские права на эти публикации принадлежат авторам статей, книг и издательствам журналов!

Поскольку снижение емкости конденсатора недопустимо из-за увеличения пульсации, было решено заменить преобразователь со стабилизатором устройством, в котором выходное напряжение поддерживается неизменным отрицательной обратной связью (ООС), управляющей работой автогенератора.

Принципиальная схема нового преобразователя напряжения показана на рисунке. Цепь регулируемой ООС образована полевыми транзисторами VT3 (регулятор напряжения смещения), VT4 (усилитель), VT5 (генератор тока). Работает устройство следующим образом. В момент включения питания, когда напряжение на выходе преобразователя отсутствует, транзисторы VT4. VT5 обесточены. После запуска генератора на транзисторах VTI. VT2 на выходе преобразователя возникает постоянное напряжение и через цепь RЗVT5R4R5) течет ток.

По мере роста выходного напряжения он увеличивается, пока не достигнет некоторого предела, зависящего от сопротивления резистора R3.

Дальнейшее увеличение выходного напряжения преобразователя сопровождается ростом напряжении на участке исток -затвор транзистора VT4 и когда оно становится больше напряжения отсечки, транзистор VT4 открывается. С ростом напряжения на резисторе R2 транзистор VT3 начинает закрываться и напряжение смещения на базах транзисторов VTI. VT2 уменьшается. В результате увеличение выходного напряжения прекращается и оно стабилизируется.

При разрядке батареи питания или увеличении нагрузки выходное напряжение преобразователя несколько уменьшается, но вслед за этим увеличивается напряжение смещения транзисторов автогенератора и первоначальное значение выходного напряжения восстанавливается. Как показала проверка, при снижении напряжения питания с 4,5 до 1,5 В выходное напряже-чие остается практически неизменным, а при увеличении до 10 В возрастает всего на 0,2 В.

Поскольку в описанном устройстве полевые транзисторы работают в микротоковом режиме, а в автогенераторе использованы среднечастотные транзисторы КТ201В, ток, потребляемый преобразователем, удалось снизить с 32 до 5 мА. Выходное сопротивление преобразователя 160 Ом (у прежнего — 5 кОм). время установления выходного напряжения 0.1 с.

Для изготовления преобразователя частично были использованы детали старого устройства: трансформатор автогенератора, конденсаторы емкостью 100 и 5 мкф, резистор сопротивлением 27 Ом и диоды Д223Б, а также алюминиевый экран, форма колебаний автогенератора близка к меандру, однако рациональное расположение деталей на печатной плате и экранирование преобразователя позволили практически полностью избавиться от помех.

Налаживание устройства свидится к проверке работоспособности автогенератора и установке требуемого выходного напряжения вначале подбором резистора R3 (грубо), а затем подстроенным резистором R4 (точно).

Этот экономичный преобразователь напряжения для питании варикапов можно применить в любом другом транзисторном приемнике.

Использование варикапов в переносных радиоприемниках вынуждает использовать для их питания преобразователи напряжения, повышающие напряжение источников питания примерно до 20 В. В таких преобразователях часто используют повышающие трансформаторы, которые трудоемки в изготовлении. Их магнитные поля могут стать источниками помех, особенно в малогабаритных радиоприемниках.

Этих недостатков лишен преобразователь, собранный по схеме рис. 95,а. Он не содержит намоточных деталей и практически не нуждается в налаживании. Элементы DD1.1 и DD1.2 образуют генератор прямоугольных импульсов, элементы DD1.3 и DD1.4 используются в качестве буферных. В умножителе напряжения работают диоды VD1—VD6, конденсаторы СЗ—С7, конденсатор С8 служит для сглаживания выпрямленного напряжения, а на транзисторах VT1—ѴТЗ и резисторе R2 собран параметрический стабилизатор напряжения. Здесь в качестве стабилитронов используются обратносмеіценные эмиттерные переходы транзисторов, у которых режим стабилизации наступает уже при токе 5… 10 мкА.

Рис. 95. Схема (а) и монтажная плата преобразователя напряжения для питания варикапов (б)

Все детали преобразователя можно смонтировать на печатной плате размерами 30X40 мм (рис. 95,б). Налаживания преобразователя не требуется, в случае необходимости выходное напряжение можно изменить подбором транзисторов VT1—ѴТЗ, для этих целей подойдут транзисторы КТ316, КТ312, КТ315 с любыми буквенными индексами.

Рассмотрим краткие характеристики макета преобразователя, собранного но данной схеме. При изменении напряжения питания от 6,5 до 9 В потребляемый ток увеличивается от 0,8 до 2,2 мА, а выходное напряжение — не более, чем на 8 … 10 мВ.

При необходимости выходное напряжение преобразователя можно поднять путем увеличения звеньев умножителя напряжения и числа транзисторов в параметрическом стабилизаторе.

Литература: И. А. Нечаев, Массовая Радио Библиотека (МРБ), Выпуск 1172, 1992 год.

Зависимость емкости варикапа \(C\) от приложенного обратного напряжения \(U_{обр}\) приблизительно определяется соотношением:

\(C \approx \cfrac{K}{ {\left(U_{обр} + \varphi_к \right)}^n } \),

    \(K\) - постоянная величина, зависящая от геометрических размеров и физических свойств перехода (диэлектрической проницаемости материала),

    \(\varphi_к\) - контактная разность потенциалов перехода, равная 0,8...0,09 В для кремниевых варикапов и 0,35...0,45 для германиевых;

    \(n\) - показатель, зависящий от концентрации примесей в переходе, т.е. от технологии изготовления диода.

В наиболее распространенных в настоящее время варикапах \(n\) < 0,5. Большие значения встречаются в диодах, которые имеют повышенный коэффициент перекрытия по емкости.

Эквивалентная схема варикапа при работе в режиме обратного смещения представлена на рис. 3.6-52 (в схеме не показаны индуктивность выводов и емкость корпуса).

Рис. 3.6-52. Эквивалентная схема варикапа

    \(R_ш\) - сопротивление потерь запирающего слоя,

    \(R_п\) - последовательное сопротивление потерь материала полупроводника и контактов,

    \(C_б\) - барьерная емкость перехода.

Добротность варикапа зависит от сопротивления материала и от сопротивления потерь запирающего слоя (сопротивления утечки). Общее выражение для добротности варикапа:

\(Q = \cfrac{\omega C R_ш}{\omega^2 C^2 R_п R_ш + 1} \)

В общем случае значения \(R_п\) и \(R_ш\) также зависят от частоты сигнала. На низких частотах преобладающими являются потери в переходе, которые падают с увеличением частоты, т.е. добротность варикапа растет. На высоких частотах значительными становятся потери в материале полупроводника, а добротность варикапа падает. Частота, на которой добротность варикапа имеет максимальное значение:

\(f_0 = \cfrac{1}{2 \pi \sqrt{R_п R_ш}}\)

при этом выражение для максимальной добротности:

\(Q_{max} = \cfrac{1}{2} \sqrt{\cfrac{R_ш}{R_п}}\)

Обычно варикапы используются на частотах приблизительно на порядок выше \(f_0\) .

Добротность варикапа существенно зависит от емкости перехода, которая, в свою очередь, зависит от величины приложенного напряжения. В результате с увеличением этого напряжения добротность варикапа увеличивается. Верхней границей управляющего напряжения является максимально допустимое обратное напряжение перехода, а нижняя определяется моментом открывания перехода. Чтобы переход все время оставался обратно смещенным, минимальная величина управляющего напряжения в предельном случае должна быть не меньше амплитуды переменного напряжения ВЧ сигнала на перестраиваемом контуре. Кроме того, минимально допустимое управляющее напряжение определяется величиной допустимых искажений формы резонансной кривой контура. В случае, если амплитуда сигнала соизмерима с величиной управляющего напряжения, средняя емкость варикапа не будет равна емкости, измеренной при малом сигнале, так как емкость за один полупериод ВЧ сигнала будет изменяться больше, чем за другой (рис. 3.6-53). Поэтому с ростом амплитуды сигнала контур расстраивается и его добротность падает.

Рис. 3.6-53. Искажение сильного сигнала при малом значении управляющего напряжения

Поскольку, как было показано выше, с увеличением управляющего напряжения добротность варикапа увеличивается, целесообразно выбирать возможно более высокие величины управляющих напряжений. Однако с увеличением управляющего напряжения крутизна вольт-фарадной характеристики варикапа уменьшается, т.е. при больших величинах управляющих напряжений для перекрытия заданного диапазона частот необходим больший диапазон изменения управляющего напряжения. Коэффициент перекрытия рабочего диапазона частот дополнительно уменьшается из-за наличия собственной емкости контурной катушки и других подключаемых параллельно контуру конденсаторов (для подстройки, для компенсации разброса параметров контура и т.п.).

Возможные схемы включения варикапа в контур (без цепей смещения по постоянному току) показаны на рис. 3.6-54. Когда необходимо обеспечить перекрытие заданного диапазона частот при минимальном возможном диапазоне управляющих напряжений, варикап в контур включают по схеме рис. 3.6-54а. Требуемый коэффициент перекрытия рабочего диапазона частот достигается соответствующим выбором емкости \(C_0\) и емкостей \(C_{min}\) и \(C_{max}\) варикапа, определяемых типом варикапа и диапазоном изменения управляющего напряжения на нем. Чем меньше значение \(C_0\), тем большее перекрытие по частоте можно обеспечить при заданном диапазоне управляющих напряжений (уменьшение \(C_0\) обычно возможно только до определенного предела, поскольку при этом для сохранения резонансной частоты контура на прежнем уровне приходится изменять намоточные данные индуктивности, входящей в контур, что увеличивает ее собственную емкость и влияет на общую добротность контура).

Рис. 3.6-54. Схемы включения варикапа в контур

В некоторых случаях при использовании для перестройки контуров варикапов важным фактором является обеспечение высокой добротности избирательных цепей. При этом для уменьшения влияния потерь в варикапе искусственно уменьшают долю емкости варикапа в полной емкости за счет введения дополнительных конденсаторов постоянной емкости (\(C1\) на рис. 3.6-54б) с малыми потерями. Однако для сохранения прежнего коэффициента перекрытия по частоте необходимо расширять пределы изменения управляющего напряжения варикапа и заходить в область более низких добротностей самого варикапа, так что выигрыш в добротности избирательной цепи возможен лишь при определенных соотношениях между емкостями варикапа и дополнительных конденсаторов. Наибольший выигрыш в добротности на нижнем конце диапазона частот получается при всяческом уменьшении величин емкостей конденсаторов контура.

При конструировании схем с варикапами следует иметь в виду, что при изменении температуры окружающей среды емкость (и добротность) варикапов меняется. Это обусловлено изменениями контактной разности потенциалов и диэлектрической проницаемости используемого полупроводникового материала. Изменение емкости происходит в направлении увеличения общей емкости с повышением температуры, т.е. температурный коэффициент емкости варикапа (\(\alpha_C\)) положителен и зависит от величины приложенного управляющего напряжения.

Изменение контактной разности потенциалов при изменении температуры почти линейно во всем рабочем диапазоне температур варикапа (уменьшается приблизительно на 2,3 мВ при повышении температуры на 1 °C). При малых значениях управляющих напряжений контактная разность потенциалов достаточно велика по сравнению с общим напряжением смещения на переходе, что приводит к значительному изменению емкости варикапа при колебаниях температуры. По мере увеличения управляющего напряжения изменения емкости становятся менее значительными. Для кремниевых варикапов в интервале управляющих напряжений 2...10 В значение \(\alpha_C\) примерно обратно пропорционально величине управляющего напряжения.

При значениях управляющих напряжений, больших чем 15...20 В, величина \(\alpha_C\) почти не зависит от приложенного напряжения и определяется температурной зависимостью диэлектрической проницаемости материала перехода, которая остается постоянной во всем диапазоне изменения управляющего напряжения.

Поскольку изменение емкости варикапа под влиянием температуры окружающей среды возникает за счет двух несвязанных между собой факторов, лучшая температурная компенсация достигается, если обеспечить отдельную компенсацию обоих эффектов.

В зависимости от выбранного диапазона управляющих напряжений и от требований к точности компенсации \(\alpha_C\) в схему могут вводиться различные элементы, компенсирующие влияние температуры либо на изменение контактной разности потенциалов, либо на изменение диэлектрической проницаемости полупроводникового материала перехода, либо одновременно на то и другое. Простые методы температурной компенсации, когда в контур включаются конденсаторы с отрицательным температурным коэффициентом емкости, могут использоваться лишь в схемах с малыми пределами изменения управляющих напряжений (не более 1,5...2 раза).

Для компенсации изменения контактной разности потенциалов достаточно добавить дополнительный источник управляющего напряжения (корректирующее напряжение), включив его последовательно с основным источником. Такое корректирующее напряжение должно иметь противоположную полярность и не зависеть от величины основного управляющего напряжения, но зависеть от температуры также, как и величина контактной разности потенциалов варикапа. Требуемую характеристику можно получить от прямосмещенного кремниевого диода. На рис. 3.6‑55 показана схема, обеспечивающая компенсацию температурных изменений контактной разности потенциалов варикапа с помощью кремниевого диода, на который подано напряжение прямого смещения.

Рис. 3.6-55. Схема компенсации температурного изменения контактной разности потенциалов варикапа с помощью прямосмещенного диода

Ток смещения диода \(VD2\) в схеме рис. 3.6‑55 должен быть выбран достаточно высоким с тем, чтобы не сказывалось влияние обратного тока варикапа (значения порядка 50...100 мА можно считать вполне достаточными для большинства случаев применения данной схемы, они обеспечивают приемлемую компенсацию вплоть до 150 °C). Компенсирующий диод должен иметь ту же самую температуру, что и варикап, а управляющее напряжение должно быть больше, чем напряжение, которое падает на диоде \(VD2\).

Для компенсации изменения диэлектрической проницаемости материала перехода от температуры в цепь питания варикапа вводят термосопротивление с отрицательным температурным коэффициентом. Такая схема компенсации показана на рис. 3.6-56. изменение сопротивления термистора должно быть таким, чтобы обеспечить необходимое изменение напряжения на регулировочном потенциометре. При необходимости введения более точной температурной компенсации используют оба рассмотренных метода.

Рис. 3.6-56. Схема компенсации температурного изменения диэлектрической проницаемости полупроводникового материала перехода варикапа с помощью терморезистора

Дополнительным источником температурной нестабильности является обратный ток варикапа, который у кремниевых диодов при нормальной комнатной температуре бывает порядка 0,01 мкА. С повышением температуры он значительно возрастает. Для подачи управляющего напряжения на варикап могут использоваться последовательная (рис. 3.6-57а) и параллельная (рис. 3.6-57б) схемы . Наличие влияния обратного тока возможно только в схеме на рис. 3.6-57б.

Рис. 3.6-57. Последовательная (а) и параллельная (б) схемы подачи управляющего напряжения на варикап

Температурное изменение обратного тока варикапа может привести к изменению падения напряжения на любом сопротивлении, включенном последовательно между варикапом и источником питания, что в результате приведет к изменению напряжения смещения на диоде, изменению его емкости и расстройке контура. Таким образом, наличие обратного тока варикапа ограничивает максимально допустимое сопротивление в цепи подачи управляющего напряжения в схеме параллельного питания. Поэтому для питания варикапов следует применять источники управляющего напряжения с возможно меньшим внутренним сопротивлением (приемлемыми считаются величины порядка 1...10 кОм), а для развязки цепей питания вместо последовательных сопротивлений использовать ВЧ дроссели.

Как уже отмечалось, контур, перестраиваемый варикапом, при малых величинах управляющего напряжения и больших уровнях принимаемого сигнала имеет недостатки, выражающиеся в изменении емкости диода в такт с изменением переменного напряжения и в сдвиге среднего значения емкости в связи с тем, что положительная и отрицательная полуволны вызывают различное изменение мгновенного значения емкости. Из-за изменения мгновенного значения емкости переменное напряжение ВЧ сильно искажается. Кроме того, из-за изменения среднего значения емкости ухудшается стабильность настройки контура. Нелинейные эффекты в контуре с варикапом начинаются уже с момента, когда приложенное переменное напряжение достигает примерно 1/3 величины постоянного управляющего напряжения.

Характеристика контура с варикапом может быть значительно улучшена за счет применения двух варикапов, включенных по переменному току последовательно в противофазе, а по постоянному току - параллельно (рис. 3.6-58). В этом случае на каждый варикап приходится лишь половина величины общего переменного напряжения сигнала, т.е. в два раза улучшается соотношение величин постоянного и переменного напряжений на варикапе, а благодаря противофазному включению незначительные и противоположно направленные изменения мгновенной емкости взаимно компенсируют друг друга (т.е. мгновенное значение общей емкости контура остается практически постоянным).

Рис. 3.6-58. Встречное включение варикапов, компенсирующее нелинейные искажения ВЧ-сигнала в контуре

Очевидно, что используемые в схеме на рис. 3.6‑58 варикапы должны иметь максимально схожие вольт-фарадные характеристики. Для применения в таких случаях выпускаются варикапы специально подобранные в пары (тройки, четверки и т.д.), а также варикапные матрицы, в которых в одном корпусе собрано несколько варикапов с одинаковыми характеристиками. Кроме встречного включения в одном контуре такие приборы применяются там, где необходимо обеспечить идентичное управление несколькими сопряженными контурами.

Кроме рассмотренных выше способов использования варикапов для перестройки резонансных контуров, эти диоды могут также использоваться и для других регулировок, осуществляемых изменением емкости. Примером может служить применение варикапов для регулирования полосы пропускания тракта промежуточной частоты. Такое регулирование может осуществляться либо за счет механического изменения связи между контурами, либо за счет переключения емкостей связи. Для регулирования ширины полосы с помощью варикапов их можно включить в качестве емкости связи между двумя контурами полосового фильтра (рис. 3.6‑59).

Рис. 3.6-59. Использование варикапа для регулировки полосы пропускания полосового фильтра

В такой схеме при изменении управляющего напряжения на варикапе ширина полосы пропускания фильтра может изменяться в 2...3 раза. Однако наряду с изменением ширины полосы пропускания при изменении управляющего напряжения будет происходить и некоторое смещение средней частоты. Этот недостаток можно уменьшить за счет применения большего числа варикапов. На рис. 3.6-60 приведена схема с двумя варикапами. Здесь варикап \(VD2\) обеспечивает изменение ширины полосы за счет изменения связи между контурами, а получающееся при этом нежелательное смещение средней частоты в сторону меньших частот компенсируется перестройкой первого контура варикапом \(VD1\). Расширение полосы в такой схеме больше, чем в схеме с одним диодом при одинаковых управляющих напряжениях, а смещение средней частоты настройки значительно меньше.

Рис. 3.6-60. Регулировка полосы пропускания полосового фильтра с помощью двух варикапов

Для еще более точной компенсации ухода средней частоты, можно использовать три варикапа, т.е. аналогично \(VD1\) в первом контуре включить варикап во второй контур.

К сожалению, при прохождении ВЧ сигнала через последовательно включенный варикап его форма значительно искажается. Поэтому в высококачественных системах обычно используют более сложные схемы перестраиваемых фильтров, где несколько включенных встречно и противофазно варикапов осуществляют сопряженное управление несколькими контурами.

При напряжении источника питания Uпит в пределах 5...10 В микросхема DD1 питается непосредственно от него. Если напряжение превышает 10 В, питать микросхему следует через гасящий RC-фильтр.

Токи базовых цепей транзисторов до 1 мА ограничиваются резисторами R6, R7 и не могут быть существенно увеличены, так как это может сказаться на работе триггера. Таким образом, ограниченными оказываются и токи коллекторов , что, с одной стороны, определяет максимальную выходную мощность преобразователя, а с другой - обеспечивает ему некоторую защиту от короткого замыкания в нагрузке.

Если необходимо повысить мощность преобразователя, его транзисторные ключи целесообразно выполнить по схеме, приведенной на рис. 2. В этом случае максимальный ток в первичной обмотке трансформатора можно оценить как Ii = =h21э VT3 (Uпит - 1,4)/R8 и выбрать резистор R8 соответствующего номинала. Транзисторы, используемые в преобразователе, должны быть с возможно малыми значениями напряжения насыщения Uкэ нас, а также наиболее подходящими по максимально допустимым току Iкmax и напряжению Uкэmax. Микросхему К176ЛЕ5 можно заменить на К561ЛЕ5, что позволит расширить пределы изменения питающего напряжения от 3 до 15 В.

Трансформатор преобразователя рассчитывают по обычной методике [Л]. Для упрощения этого процесса можно воспользоваться данными, приведенными в таблице. Расчетные данные ряда преобразователей с независимым возбуждением на кольцевых магнитопроводах из феррита 2000НМ1 соответствуют частоте 50 кГц.

Типоразмер магнитопровода

Сначала определяют габаритную мощность Рг, трансформатора как сумму мощностей всех нагрузок и ток первичной обмотки Ii=Pг/(Ui*1,3). Затем по таблице выбирают магнитопровод, обеспечивающий трансформатору габаритную мощность (с запасом), и рассчитывают число витков первичной обмотки: Wi= w"Ui(1 - Uк/2), где Uк - коэффициент, учитывающий неидеальность трансформатора, и диаметр обмоточного провода: d, =1,13*(корень из Ii/j).

Рекомендую в два провода выполнять первичную обмотку, плотно укладывая витки на магнитопровод, и, после расчетного числа витков, продолжить намотку до заполнения слоя. Затем следует пересчитать число витков на 1 В напряжения с учетом уже намотанных и с новым значением w рассчитать числа витков вторичных обмоток: Wi=w"Ui(1+Uк/2), а также диаметр провода (по формуле, аналогичной приведенной выше).

Витки вторичных обмоток трансформатора также следует укладывать равномерно по всему периметру магнитопровода. Такой прием позволяет уменьшить индуктивность рассеяния и лишний раз гарантирует ненасыщение магнитопровода при работе, даже если частота преобразования несколько уменьшится.

Налаживание преобразователя начинают, отключив предварительно источник питающего напряжения от первичной обмотки трансформатора. Пользуясь осциллографом, проверяют наличие на выходах триггера импульсов и их частоту. Затем на трансформатор подают питание и проверяют работу преобразователя на холостом ходу. После этого можно подключить эквивалент нагрузки и убедиться, что преобразователь устойчиво работает при любой нагрузке, не превышающей максимально допустим, и при этом его транзисторы работают в ключевом режиме - фронты сигналов на коллекторах должны быть крутыми и напряжение на открытом транзисторе не превышало справочного значения Uкэнас.

ЛИТЕРАТУРА
Источники электропитания РЭА. Справочник. Под ред. . - М.: Радио и связь, 1985.

От редакции. Для уменьшения времени выключения мощных транзисторов (см. рис. 2) следует их эмиттерные переходы зашунтировать резисторами сопротивлением 100...510 Ом.

Радио, N 7 1996 г.

Бестрансформаторные конденсаторные преобразователи напряжения

Рис. 1.1. Схемы базовых элементов бестрансформаторных пре­образователей: 1 - задающий генератор; 2 - типовой блок усилителя

Бестрансформаторный преобразователь напряжения состо­ит из двух типовых элементов (рис. 1.2): задающего генератора 1 и двухтактного ключа-усилителя 2, а также умножителя напряже­ния (рис. 1.1, 1.2). Преобразователь работает на частоте 400 Гц и обеспечивает при напряжении питания 12,5 В выходное

напряжение 22 В при токе нагрузки до 100 мА (параметры эле­ментов: R1=R4=390 Ом, R2=R3=5,6 кОм, С1=С2=0,47 мкФ). В бло­ке 1 использованы транзисторы КТ603А - Б; в блоке 2 - ГТ402В{Г) и ГТ404В{Г).

https://pandia.ru/text/78/004/images/image045_7.jpg" alt="Бестрансформаторные" width="187" height="119 src=">

Схемы преобразователей напряжения на основе типо­вого блока

Преобразователь напряжения , построенный на основе типового блока, описанного выше (рис. 1.1), можно применить для получения выходных напряжений разной полярности так, как это показано на рис. 1.3.

Для первого варианта на выходе формируются напряжения -1-10 Б и -10 Б; для второго - -1-20 Б и -10 Б при питании устройст­ва от источника напряжением 12 Б.

Для питания тиратронов напряжением примерно 90 Б при­менена схема преобразователя напряжения по рис. 1.4 с задаю­щим генератором 1 и параметрами элементов: R1=R4=1 кОм,

R2=R3=10 кОм, С1 =С2=0,01 мкФ . Здесь могут быть использо­ваны широко распространенные маломощные транзисторы. Умно­житель имеет коэффициент умножения 12 и при имеющемся напряжении питания можно было бы ожидать на выходе примерно 200 В, однако реально из-за потерь это напряжение составляет всего 90 В, и величина его быстро падает с увеличением тока нагрузки.

https://pandia.ru/text/78/004/images/image047_6.jpg" alt="Бестрансформаторные" width="160" height="110 src=">

Рис. 1.5. Схема инвертора напряжения

Для получения инвертированного выходного напряжения также может быть использован преобразователь на основе типо­вого узла (рис. 1.1). На выходе устройства (рис. 1.5) образуется напряжение, противоположное по знаку напряжению питания . По абсолютной величине это напряжение несколько ниже напряжения питания, что обусловлено падением напряжения (по­терями напряжения) на полупроводниковых элементах. Чем ниже напряжение питания схемы и чем выше ток нагрузки, тем больше эта разница.

Преобразователь (удвоитель) напряжения (рис. 1.6) содер­жит задающий генератор 1 (1 на рис. 1.1), два усилина рис. 1.1) и выпрямитель по мостовой схеме (VD1 -VD4) .

Блок 1: R1=R4=100 Ом; R2=R3=10 кОм; С1=С2=0,015 мкФ, транзисторы КТ315.

Известно, что мощность, передаваемая из первичной цепи во вторичную, пропорциональна рабочей частоте преобразо­вания, поэтому одновременно с ее ростом уменьшаются емко­сти конденсаторов и, следовательно, габариты и стоимость устройства.

Данный преобразователь обеспечивает выходное напряже­ние 12 Б (на холостом ходу). При сопротивлении нагрузки 100 Ом выходное напряжение снижается до 11 Б; при 50 Ом - до 10 Б; а при 10 Ом -до 7 Б.

https://pandia.ru/text/78/004/images/image049_5.jpg" alt="Бестрансформаторные" width="187" height="72 src=">

Схема преобразователя для получения разнополярных выходных напряжений

Преобразователь напряжения (рис. 1.7) позволяет получить на выходе два разнополярных напр’яжения с общей средней точкой . Такие напряжения часто используют для питания операцион­ных усилителей. Выходные напряжения близки по абсолютной величине напряжению питания устройства и при изменении его ве­личины изменяются одновременно.

Транзистор VT1 - КТ315, диоды VD1 и У02-Д226.

Блок 1: R1=R4=1,2 кОм; R2=R3=22 кОм; С1=С2=0,022 мкФ, транзисторы КТ315.

Блок 2: транзисторы ГТ402, ГТ404.

Выходное сопротивление удвоителя - 10 Ом. В режиме хо­лостого хода суммарное выходное напряжение на конденсаторах С1 и С2 равно 19,25 В при токе потребления 33 мА. При увеличе­нии тока нагрузки от 100 до 200 мА это напряжение снижается с 18,25 до 17,25 Б.

Задающий генератор преобразователя напряжения (рис. 1.8) выполнен на двух /ШО/7-элементах . К его выходу подключен каскад усиления на транзисторах VT1 и VT2. Инвертированное на­пряжение на выходе устройства с учетом потерь преобразования на несколько процентов (или десятков процентов - при низко­вольтном питании) меньше входного.

https://pandia.ru/text/78/004/images/image051_5.jpg" alt="Бестрансформаторные" width="187" height="70 src=">

Схема преобразователя напряжения для формирова­ния разнополярных напряжений с задающим генерато­ром на КМОП-элементах

https://pandia.ru/text/78/004/images/image053_6.jpg" alt="Бестрансформаторные" width="187" height="84 src=">

Рис. 1.11. Схема преобразователя напряжения для варикапов

MsoNormalTable">

https://pandia.ru/text/78/004/images/image056_5.jpg" alt="Бестрансформаторные" width="187" height="77 src=">

Схема преобразователя-инвертора напряжения с за­дающим генератором на микросхеме КР1006ВИ1

Характеристики преобразователя - инвертора напряжения (рис. 1^14) приведены в табл. 1.2.

На следующем рисунке показана еще одна схема преобра­зователя напряжения на мтросхеме КР1006ВИ1 (рис. 1.15). Рабочая частота задающего генератора 8 кГц. На его выходе включен транзисторный усилитель и выпрямитель, собранный по схеме удвоения напряжения. При напряжении источника питания 12 Б на выходе преобразователя получается 20 Б. Потери преоб­разователя обусловлены падением напряжения на диодах выпря­мителя-удвоителя напряжения.

Таблица 1.2. Характеристики преобразователя-инвертора напряжения (рис. 1.14)

Iпотреб, мА

https://pandia.ru/text/78/004/images/image058_6.jpg" alt="Бестрансформаторные" width="187" height="100 src=">

Схема формирователя напряжения отрицательной полярности

https://pandia.ru/text/78/004/images/image060_6.jpg" alt="Бестрансформаторные" width="187" height="184 src=">

Рис. 1.18. Схема точного преобразователя полярности на двух микросхемах К561ЛА7

В процессе работы преобразователя на выходе формирует­ся напряжение отрицательной полярности, с большой точностью при вьюокоомной нагрузке повторяющее напряжение питания во всем диапазоне паспортных значений питающих напряжений (от 3 до