Простой высоковольтный преобразователь своими руками из трех деталей. Cхема высоковольтного преобразователя напряжения Тема: как сделать, спаять схему для получения высокого напряжения самому

Повышающие трансформаторные преобразователи напряжения на транзисторах широко используются в нестационарных и полевых условиях для замены сети 220 В 50 Гц для питания сетевой аппаратуры и приборов.

Такие преобразователи должны обеспечивать выходную мощность от единиц до сотен ватт при питании от аккумуляторов или генераторов постоянного тока напряжением от 6 до 24 В.

Обычно в качестве преобразователей напряжения повышенного напряжения используют автогенераторные преобразователи или трансформаторные преобразователи с внешним возбуждением.

Пример двухтактного трансформаторного автогенератора, преобразующего постоянное напряжение 12 6 в переменное 220 В, показан на рис. 10.1. Преобразователь работает на повышенной частоте преобразования — 500 Гц (под нагрузкой) и 700 Гц на холостом ходу. КПД преобразователя около 75%. Такой преобразователь можно использовать, преимущественно, для питания активной нагрузки, например, паяльника, осветительной лампы. Его выходная мощность — до 40 Вт.

Резистор R1 является ограничителем базового тока. Цепь R2, С1 создает запускающий импульс тока в момент включения питания генератора. Дроссель L1 ДПМ-0,4 снижает вероятность самовозбуждения преобразователя на повышенной частоте (более 10 кГц).

Для трансформатора Т1 использован магнитопровод трансформатора кадровой развертки (ТВК). Все его обмотки перемотаны. Обмотки I и II содержат по 30 витков провода ПЭВ 0,6...0,8. Обмотка III содержит 20 витков провода ПЭВ 0,16...0,2; обмотка IV — 1000 витков такого же провода. Намотка обмоток I и II ведется одновременно в два провода виток к витку.

Рис. 10.1. Схема преобразователя напряжения средней мощности.


Рис. 10.2. Схема мощного преобразователя напряжения.

Обмотка III наматывается также виток к витку. Обмотка IV — внавал равномерно по каркасу. Повышающий трансформаторный преобразователь напряжения аккумулятора (рис. 10.2) позволяет получить на выходе напряжение 220 В 50 Гц, потребляя при напряжении 12 В ток 5 А.

В основе устройства — задающий генератор прямоугольных импульсов, выполненный по схеме мультивибратора, типовая схема которого была приведена ранее на рис. 1.1. Рабочая частота этого генератора должна быть 50 Гц. Поскольку выходная мощность задающего генератора невелика, к выходам мультивибратора подключены двухкаскадные усилители мощности, позволяющие получить усиление по мощности до 1000 раз.

На выходе усилителя включен повышающий низкочастотный трансформатор Т1. Диоды VD1 и VD2 защищают выходные транзисторы преобразователя при их работе на индуктивную нагрузку.

В качестве трансформатора Т1 можно использовать унифицированные трансформаторы типа ТАН или ТПП. Транзисторы VT1 и VT4 допустимо заменить на КТ819ГМ (с радиаторами); VT2 и ѴТЗ — КТ814, КТ816, КТ837; диоды VD1 и VD2 — Д226.

Преобразователь постоянного напряжения 12 6 в переменное 220 В (рис. 10.3) может обеспечить выходную мощность 100 Вт.


Рис. 10.3. Схема преобразователя напряжения мощностью 100 Вт.

На преобразователь подается постоянное напряжение 12 В от аккумулятора. Его задающий генератор формирует два пара-фазных напряжения с частотой 50 Гц (частота промышленной сети). Напряжения с задающего генератора подаются на два однотипных импульсных усилителя, которые коммутируют напряжение на первичной обмотке трансформатора Т1. Со вторичной обмотки трансформатора Т1 переменное напряжение 220 В частотой 50 Гц поступает в нагрузку.

Задающий генератор (см. типовую схему узла на рис. 1.1) на основе симметричного мультивибратора отличается использованием диодов, включенных в базовые цепи транзисторов. За счет нелинейности ВАХ диодов выходные импульсы мультивибратора имеют незначительные выбросы.

К выходам задающего генератора подключены два однотипных трехкаскадных усилителя. На вторичной обмотке Т1 получается переменное напряжение 220 В.

Силовой трансформатор Т1 намотан на Ш-образном магнитопроводе сечением 12 см2. Первичная обмотка содержит две половины по 240 витков провода ПЭЛ 0,65 мм. Вторичная обмотка имеет 4400 витков провода ПЭЛ 0,25 мм.

Выходные транзисторы ѴТ1 и ѴТ6 установлены на радиаторы площадью по 100 см2.

Для защиты выходных транзисторов следует использовать высокочастотные диоды VD1 и VD2 типа КД213, КД2997. Транзисторы ѴТ1 и ѴТ6 можно заменить на КТ819ГМ (с радиаторами); ѴТ2 и ѴТ5 — КТ805\ ѴТЗ и ѴТ4 — КТ208.

Схема простого преобразователя напряжения, позволяющего при питании от автомобильного аккумулятора 12 В получить на выходе напряжение 220 В 50 Гц, показана на рис. 10.4. . Максимальная выходная мощность преобразователя — 100 Вт, КПД — до 50%.


Рис. 10.4. Схема простого преобразователя напряжения.

Задающий генератор выполнен по схеме традиционного симметричного мультивибратора, выполненного на транзисторах ѴТ2 и ѴТЗ (КТ815). Выходные каскады преобразователя собраны на составных транзисторах ѴТ1 и ѴТ4 (КТ825). Эти транзисторы установлены без изолирующих прокладок на общий радиатор.

Устройство потребляет от аккумулятора ток до 20 А. В качестве силового использован готовый сетевой трансформатор на 100 Вт (сечение центральной части железного сердечника — около 10 см2). У него должны быть две вторичные обмотки, рассчитанные на 8В/10 А каждая.

Для того, чтобы частота работы задающего генератора была равна 50 Гц, подбирают номиналы резисторов R3 и R4.

Преобразователь напряжения повышенной мощности работает от аккумуляторной батареи (рис. 10.5) и позволяет получить на выходе переменное напряжение 220 В частотой 50 Гц. Мощность нагрузки может достигать 200 Вт.

Трансформатор Т1 намотан на ленточном магнитопроводе ШЛ12х20. Первичная обмотка содержит 500 витков ПЭВ-2 0,21, отвод от середины. Обмотки управления имеют по 30 витков того же провода диаметром 0,4 мм.

Трансформатор Т2 — также на ленточном магнитопроводе ШЛ32х38. Первичная обмотка содержит 96 витков провода ПЭВ-2 2,5, отвод от середины. Вторичная обмотка имеет 920 витков провода ПЭВ-2 диаметром 0,56 мм.

Выходные транзисторы устанавливаются на радиаторах площадью по 200 см2. Сильноточные токовводы должны иметь сечение не менее 4 мм2. Работа преобразователя проверялась от аккумулятора 6СТ60.

Для питания электробритвы от автомобильной бортовой сети с постоянным напряжением 12 В предназначено следующее устройство (рис. 10.6). Оно потребляет под нагрузкой ток около 2,5 А.

В преобразователе задающий генератор на триггере DD1.1 вырабатывает частоту 100 Гц. Потом делитель частоты на триггере DD1.2 уменьшает ее в 2 раза, а предварительный усилитель на транзисторах VT1, VT2 раскачивает усилитель мощности на транзисторах ѴТЗ, ѴТ4, нагруженный на трансформатор Т1. Задающий генератор обладает стабильностью частоты не хуже 5% при изменении питающего напряжения от 6 до 15 Б. Делитель частоты одновременно играет роль симметрирующей ступени, позволяя улучшить форму выходного напряжения преобразователя. Микросхема DD1 К561ТМ2 (564ТМ2) и транзисторы предварительного усилителя питаются через фильтр R9, СЗ и С4. Вторичная обмотка трансформатора Т1 с конденсатором С5 и нагрузкой образуют колебательный контур с резонансной частотой около 50 Гц.


Рис. 10.5. Схема преобразователя напряжения повышенной мощности.


Рис. 10.6. Схема преобразователя напряжения для питания электробритвы.

Трансформатор Т1 можно изготовить на основе любого сетевого трансформатора мощностью 30...50 Вт. Все ранее существовавшие вторичные обмотки с трансформатора удаляют (сетевая будет служить новой вторичной обмоткой), а вместо них наматывают проводом ПЭЛ или ПЭВ-2 диаметром 1,25 мм две полуобмотки, каждая с числом витков, соответствующим коэффициенту трансформации около 20 по отношению к оставленной обмотке на 220 В. Если число витков высоковольтной обмотки неизвестно, количество витков низковольтной обмотки определяют экспериментально, подбором числа витков до получения на выходе преобразователя напряжения 220 В.

Емкость конденсатора С5 подбирают из условия получения максимального выходного напряжения при подключенной нагрузке.

Схема преобразователя (рис. 10.6) была упрощена В. Каравкиным. Усовершенствования коснулись только задающего генератора, схема которого показана на рис. 10.7. Этот генератор работает на частоте 50 Гц.

Преобразователь постоянного напряжения 12 6 в переменное 220 В (рис. 10.8) при подключении к автомобильному аккумулятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2...3 часов.

Рис. 10.7. Вариант схемы задающего генератора для преобразователя напряжения.


Рис. 10.8. Схема преобразователя напряжения на 100 Вт.

Задающий генератор на симметричном мультивибраторе (VT1 и VT2) нагружен на мощные парафазные ключи (ѴТЗ — ѴТ8), коммутирующие ток в первичной обмотке повышающего трансформатора Т1. Мощные транзисторы ѴТ5 и ѴТ8 защищены от перенапряжений при работе без нагрузки диодами VD3 и VD4.

Трансформатор выполнен на магнитопроводе ШЗбхЗб, низковольтные обмотки I’ и I” имеют по 28 витков провода ПЭЛ диаметром 2,1 мм, а повышающая обмотка II — 600 витков ПЭЛ диаметром 0,6 мм, причем сначала наматывают W2, а поверх нее двойным проводом (с целью достижения симметрии полуобмоток) W1. При налаживании с помощью резистора R5 добиваются минимальных искажений формы выходного напряжения.

Схема преобразователя напряжения на 300 Вт показана на рис. 10.9. Задающий генератор преобразователя собран на однопереходном транзисторе VT1, резисторах R1 — R3 и конденсаторе С2. Частоту генерируемых им импульсов, равную 100 Гц, D-триггер на микросхеме DD1 К561ТМ2 делит на 2. При этом на выходах триггера формируются парафазные импульсы, следующие с частотой 50 Гц. Они через буферные элементы — инверторы КМОП-микросхемы К561ЛН2 управляют ключевыми транзисторами (блок 1), включенными по схеме двухтактного усилителя мощности. Нагрузкой этого каскада служит трансформатор Т1, повышающий импульсное напряжение до 220 В.


Рис. 10.9. Схема преобразователя напряжения на 300 Вт.

Трансформатор Т1 выполнен на магнитопроводе ПЛ25х100х20. Обмотки I и II содержат по 11 витков из алюминиевой шины сечением 3x2 мм, обмотка III выполнена проводом ПБД диаметром 1,2 мм и имеет 704 витка.

Приступая к налаживанию устройства плюсовой проводник источника питания отключают от точки соединения обмоток I и II трансформатора Т1 и, пользуясь осциллографом, проверяют частоту и амплитуду импульсов на базах транзисторов. Амплитуда импульсов должна быть около 2 Б, а их частоту следования, равную 50 Гц, устанавливают резистором R1.

Каждый из выходных транзисторов установлен на теплоотводе с площадью около 200 см2 Резисторы в коллекторных цепях транзисторов изготовлены из нихромового провода диаметром 1,2 мм (10 витков на оправке диаметром 4 мм). Если их включить

в эмиттерные цепи транзисторов, то транзисторы каждого п/іеча можно будет установить на общий теплоотвод. Нагрузку к преобразователю допускается подключать только после того, как на схему будет подано питание.

Все рассмотренные ранее повышающие преобразователи имели нерегулируемое и нестабилизированное выходное напряжение.

На рис. 10.10 показан простой повышающий преобразователь, к достоинствам которого можно отнести:

  • стабилизированное выходное напряжение;
  • возможность регулировки величины выходного напряжения в значительных пределах;
  • применение широко распространенных элементов;
  • использование в качестве Т1 типового трансформатора ТН-46-127/220-50 без каких-либо переделок.

Рис. 10.10. Схема повышающего преобразователя 9...12,6 В/220 В, 18 Вт с регулируемым стабилизированным выходным напряжением переменного тока.

Преобразователь выполнен на транзисторах ѴТ4 и ѴТ5 по классической схеме Ройера. Его питание осуществляется от регулируемого стабилизатора напряжения на транзисторах ѴТ1 — ѴТЗ. Следует иметь в виду, что транзисторы ѴТЗ — ѴТ5 обязательно должны быть установлены на теплоотводящих пластинах. Составной стабилитрон VD1 — VD2 (КС147А и КС133А) можно заменить на КС182. Максимальный ток нагрузки — до 100 мА.

В этой статье хочу рассказать о намотке трансформатора для мощного автомобильного инвертора 12-220.
Данный трансформатор был намотан для работы совместно с платой китайского автомобильного преобразователя напряжения.

Такие инверторы в последнее время находят широкую популярность из-за легкого веса, компактных размеров и небольшой цены, незаменимая вещь если нужно в автомобиле подключить сетевые нагрузки, которые нуждаются в источнике питания 220 Вольт, да еще и переменный ток с частотой 50 Гц, инвертор полностью может обеспечивать такие условия. Несколько слов о самом преобразователе, его примерная схема показана ниже.

Схема приведена только для того, чтобы показать принцип работы, а работает это дело довольно простым образом.

Два генератора, оба TL494, первый из них работает на частоте около 60кГц и предназначен для раскачки силовых транзисторов первичной цепи, которые в свою очередь раскачивают силовой импульсный трансформатор. Второй генератор настроен на частоту порядка 100 Гц и управляет высоковольтными силовыми транзисторами.

Выпрямленное напряжение после вторичной обмотки трансформатора поступает к высоковольтным полевикам, которые срабатывая с заданной частотой превращают постоянный ток в переменный – с частотой 50 Гц. Форма выходного сигнала – прямоугольная или правильнее говоря – модифицированная синусоида.

Наш трансформатор является основным силовым компонентом инвертора и его намотка самый ответственный момент.

Первичная обмотка в виде шины (к сожалению точную длину указать не могу), ширина этой шины порядка 24мм, толщина 0.5мм.

Рабочую частоту и тип задающего генератора.
Входное напряжение инвертора
Габаритные размеры и тип (марку) сердечника трансформатора

Вначале была намотана первичная обмотка. Две плечи были намотаны одной цельной лентой, кол-во витков 2х2 витка. После намотки первых двух витков был сделан отвод, затем намотаны остальные два витка.

Поверх первичной обмотки обязательно нужно ставить изоляцию, в моем случае обычная изолента. Количество слоев изоляции – 5.

Вторичная обмотка мотается в том же направлении, что и первичная, например – по часовой стрелке.


Для получения 220 Вольт выходного напряжения в моем случае обмотка содержит 42 витка, притом намотка обмотки делалась слоями – первый слой 14 витков, поверх еще два слоя, которые содержат точно такое же количество витков.
Обмотка моталась двумя параллельными жилами провода 0,8мм, пример расчета показан ниже.

После всего этого собираем трансформатор – скрепляем половинки сердечника используя любую изоленту или скотч, клей не советую, поскольку он может проникнуть между половинками феррита и образовать искусственный зазор, который приведет к повышению тока покоя схему и к сгоранию входных транзисторов инвертора, так, что нужно на этот фактор обратить большое внимание.




В работе трансформатор ведет себя очень спокойно, ток потребления без нагрузки в районе 300 мА, но это с учетом потребления высоковольтной части.

Максимальная габаритная мощность сердечника, который я использовал, составляет в районе 1000 ватт, разумеется намоточные данные будут разными в зависимости от типа используемого сердечника. К стати намотку можно делать как на Ш-образных сердечниках, так и на ферритовых кольцах.

По такой основе мотаются исключительно все трансформаторы и в промышленных и в самодельных импульсных преобразователей напряжения, к стати – конструкции самодельных инверторов очень часто повторяются радиолюбителями в проектах сабвуферных усилителей и не только, так, что думаю статья была интересной для многих.

С помощью данного преобразователя напряжения можно получить 220 вольт от аккумуляторной батареи, напряжением 3.7 вольт. Схема не сложная и все детали доступы, этим преобразователям можно запитать энергосберегающую или светодиодную лампу. К сожалению более мощные приборы подключить не получится, так как преобразователь маломощный и больших нагрузок не выдержит.

Итак, для сборки преобразователя нам понадобится:

  • Трансформатор от старого зарядного устройства для телефона.
  • Транзистор 882P или его отечественные аналоги КТ815, КТ817.
  • Диод IN5398, аналог КД226 или вообще любой другой рассчитанный на обратный ток до 10 вольт средней или большой мощности.
  • Резистор (сопротивление) на 1 кОм.
  • Макетная плата.

Еще естественно понадобится паяльник с припоем и флюсом, кусачки, провода и мульти метр (тестер). Можно конечно изготовить и печатную плату, но для схемы из нескольких деталей не стоит тратить время на разработку разводки дорожек их прорисовку и травление фольгированного текстолита или гетинакса. Проверяем трансформатор. Плата старого зарядного устройства.

Аккуратно выпаиваем трансформатор.


Дальше нам надо проверить трансформатор и найти выводы его обмоток. Берем мультиметр, переключаем его в режим омметра. По очереди проверяем все выводы, находим те которые парой «звонятся» и записываем их сопротивления.
1. Первая 0,7 Ом.


2. Вторая 1,3 Ом.


3. Третья 6,2 Ом.


Та обмотка, у которой наибольшее сопротивление была первичной, на нее подавалось 220 В. В нашем устройстве она будет вторичной, то есть выходом. С остальных снималось пониженное напряжение. У нас они будут служить как первичная (та, которая с сопротивлением 0,7 ом) и часть генератора (с сопротивлением 1,3). Результаты замеров у разных трансформаторов могут отличаться, нужно ориентироваться на их соотношение между собой.

Схема устройства


Как видите она простейшая. Для удобства мы пометили сопротивления обмоток. Трансформатор не может преобразовывать постоянный ток. Поэтому на транзисторе и одной из его обмоток собран генератор. Он подает пульсирующее напряжение от входа (батареи) на первичную обмотку, напряжение около 220 вольт снимается с вторичной.

Собираем преобразователь

Берем макетную плату.


Устанавливаем трансформатор на нее. Выбираем резистор в 1 килоом. Вставляем его в отверстия платы, рядом с трансформатором. Загибаем выводы резистора так чтобы соединить их с соответствующими контактами трансформатора. Припаиваем его. Удобно при этом закрепить плату в каком ни будь зажиме, как на фото, чтобы не возникала проблема недостающей «третьей руки». Припаянный резистор. Лишнюю длину вывода обкусываем. Плата с обкусанными выводами резистора. Дальше берем транзистор. Устанавливаем его на плату с другой стороны трансформатора, так как на скриншоте (расположения деталей я подобрал так, чтобы было удобнее их соединять согласно принципиальной схеме). Изгибаем выводы транзистора. Припаиваем их. Установленный транзистор. Берем диод. Устанавливаем его на плату параллельно транзистору. Припаиваем. Наша схема готова.



Припаиваем провода для подключения постоянного напряжения (DC input). И провода для съема пульсирующего высокого напряжения (AC output).


Для удобства провода на 220 вольт берем с «крокодилами».


Наше устройство готово.

Тестируем преобразователь

Для того чтобы подать напряжение выбираем аккумулятор на 3-4 вольта. Хотя можно использовать и любой другой источник питания.


Припаиваем провода входа низкого напряжения к нему, соблюдая полярность. Замеряем напряжение на выходе нашего устройства. Получается 215 вольт.


Внимание. Не желательно прикасаться к деталям при подключенном питании. Это не столь опасно, если у вас нет проблем со здоровьем, особенно с сердцем (хотя две сотни вольт, но ток слабый), но неприятно «пощипать» может.
Завершаем тестирование, подключив люминесцентную энергосберегающую лампу на 220 вольт. Благодаря «крокодилам» это несложно сделать без паяльника. Как видите, лампа горит.


Наше устройство готово.
Совет. Увеличить мощность преобразователя можно установив транзистор на радиатор.
Правда емкости аккумулятора хватит не на долго. Если вы собираетесь постоянно использовать преобразователь, то выберите более емкую батарею и сделайте для него корпус.

Очень простой преобразователь на 50 кВ, который имеет в своем составе по сути три элемента. Все компоненты доступны и при желании из несложно найти.
Высоковольтный преобразователь может быть использован для различных экспериментов с высоким электричеством, как ионизатор, прибор проверки целостности изоляции и т.п.

Что потребуется:
- Трансформатор строчной развертки от любого телевизоров с кинескопом.
- Полевой транзистор IRFZ44 –
- Резистор 150 Ом (1/2 Вт).

Схема высоковольтного преобразователя

Соберем все на макетной плате без пайки. Я просто покажу работу, а если вам понравиться вы сможете перенести на более надежную плату и запаять все элементы.


Подключение транзистора, если кто не знает.


Обмотку трансформатора нужна намотать нам. Высоковольтная обмотка будет родная. Берем обычный, не совсем тонкий провод и намотаем 14-16 витком. Отвод сделаем по середине обмотки.





Теперь подключаем все к нашей схеме. В самую последнюю очередь подключается питание. Будьте осторожны, так как работаете с высоким напряжением. Не подносите руки к включенному трансформатору.

Сделайте расстояние примерно 1 см, между высоковольтным выходом трансформатора и с выводами другой стороны. И только потом подайте питание. Если искрит, значит генератор возбуждается и все работает нормально.
Если будете эксплуатировать длительное время, желательно установить транзистор на радиатор. А если искра будет маленькая, то можно увеличить напряжение до 10 или до 15 В.

Видео работы