Повышающий DC-DC преобразователь. Принцип работы. Как работают импульсные преобразователи напряжения (27 схем) Схема китайского понижающего преобразователя напряжения

Подходит например для питания ноутбука в авто, для преобразования 12-24, для подзарядки автомобильного аккумулятора от БП на 12V и т.п

Преобразователь добирался с левым треком типа UAххххYP и о-очень долго, 3 месяца, чуть диспут не открыл.
Продавец хорошо замотал устройство.

В комплекте были латунные стойки с гаечками и шайбочками, которые сразу прикрутил, чтобы не затерялись.

Монтаж довольно качественный, плата отмыта.
Радиаторы вполне приличные, хорошо закреплены и изолированы от схемы.
Дроссель намотан в 3 провода - правильное решение на таких частотах и токах.
Единственное - дроссель не закреплён и висит на самих проводах.

Реальная схема устройства:

Наличие стабилизатора питания микросхемы порадовало - это значительно расширяет диапазон входного рабочего напряжения сверху (до 32В).
Выходное напряжение естественно не может быть меньше входного.
Подстроечным многооборотным резистором можно настраивать выходное стабилизированное напряжение в диапазоне от входного до 35В
Красный светодиодный индикатор горит при наличии напряжения на выходе.
Собран преобразователь на базе широко распространённого ШИМ контроллера UC3843AN

Схема подключения - стандартная, добавлен эмиттерный повторитель на транзисторе для компенсации сигнала с токового датчика. Это позволяет повысить чувствительность токовой защиты и снизить потери напряжения на токовом датчике.
Рабочая частота 120кГц

Если-бы Китайцы и тут не накосячили, я-бы сильно удивился:)
- При небольшой нагрузке, генерация происходит пачками, при этом слышно шипение дросселя. Также заметна задержка регулирования при изменении нагрузки.
Это происходит из-за неверно выбранной цепи компенсации обратной связи (конденсатор 100нФ между 1 и 2 ногами). Значительно уменьшил ёмкость конденсатора (до 200пФ) и подпаял сверху резистор 47кОм.
Шипение пропало, стабильность работы возросла.

Конденсатор для фильтрации импульсных помех на входе токовой защиты поставить забыли. Поставил конденсатор 200пФ между 3 ногой и общим проводником.

Отсутствует шунтирующая керамика параллельно электролитам. При необходимости, можно допаять SMD керамику.

Защита от перегрузки имеется, защиты от КЗ нет.
Никаких фильтров не предусмотрено, входной и выходной конденсаторы не очень хорошо сглаживают напряжение при мощной нагрузке.

Если входное напряжение вблизи нижней границе допуска (10-12В), имеет смысл переключить питание контроллера со входной цепи на выходную, перепаяв предусмотренную на плате перемычку

Осциллограмма на ключе при входном напряжении 12В

При небольшой нагрузке наблюдается колебательный процесс дросселя

Вот что удалось выжать в максимуме при входном напряжении 12В
Вход 12В / 9A Выход 20В / 4,5А (90 Вт)
При этом оба радиатора прилично разогрелись, но перегрева не было
Осциллограммы на ключе и выходе. Как видно, пульсации очень велики из за небольших емкостей и отсутствия шунтирующей керамики

Если входной ток достигает 10А, преобразователь начинает противно свистеть (срабатывает токовая защита) и выходное напряжение снижается

На самом деле, максимальная мощность преобразователя сильно зависит от входного напряжения. Производитель заявляет 150Вт, максимальный входной ток 10А, максимальный выходной ток 6А. Если преобразовывать 24В в 30В, то конечно он выдаст заявленные 150Вт и даже немного больше, только вряд-ли это кому-то нужно. При входном напряжении 12В, можно рассчитывать только на 90Вт

Выводы делайте сами:)

Планирую купить +94 Добавить в избранное Обзор понравился +68 +149

В основном, питание различных устройств и приборов осуществляется линейным стабилизатором. Это обусловлено привычкой и простотой схемы. Но при таком способе существует один серьезный недостаток нагрев и как следствие более высокое энергопотреблении. Хорошим выходом из данной ситуации является использование достаточно распространенных сегодня специализированных микросхем который осуществляют преобразование номинала постоянного напряжения в обоих направлениях.

Резисторы R3, R2 являются классическим делителем, с них поступает на пятый вывод обратной связи преобразователя .


Работа схемы: Для установки нужного нам значения в вольтах на выходе микросхемы mc34063 достаточно выбрать нужные номиналы сопротивлений R3, R2. Их значения можно рассчитать с помощью специальной программы расчетки для mc34063, архив с которой вы можете скачать по ссылке чуть выше. Сопротивление R1 ограничивает ток на выходе микросхемы и предохраняет ее от короткого замыкания.

3.3В из 1.2/1.5В на MCP1640

В радиолюбительской практике возникают случаи, когда для питания самоделки необходимо напряжение 3.3 В, но под рукой имеется только типа АА или ААА на 1.2 - 1.5 В. Тогда на помощь приходят микросборки повышающих преобразователей dc dc


MCP1640 имеет отличный КПД до 96%, поддерживает входной уровень от 0.35 Вольт и более. Выходное регулируется в диапазоне от 2.0 В до 5.5 В. На схеме номиналы радиокомпонентов подобраны, для получения 3.3 В от типовой пальчиковой батарейки. Вывод VFB применяется для регулировки с помощью резистивного делителя. Номинальное напряжение обратной связи в этом DC DC преобразователе составляет 1.21 В при регулировки выходного. Максимальный выходной ток - 150 мА.

На микросхеме LTC3400

КПД этой микросборки 92%. Начальное напряжение - 0.85 В, а выходное лежит в интервале от 2.5 В до 5 В и настраивается с помощью формулы:

V OUT = 1.23V ×

Вывод микросборки LTC3400 SHDN нужно соединить с V in через подтягивающее сопротивление номиналом 1 МОм. Максимальный ток, который можно получить на выходе, составляет 100 мА. Таким образом LTC3400 или MCP1640 в схеме DC DC преобразователя идеально подойдут для ваших микроконтроллерных самоделок, где питание реализовано от типовых батареек.

Схема очень похожа, но есть незначительные отличия.


Номиналы для схемы DC-DC повышающего преобразователя соответствуют выходному "U" в 12 вольт, если требуется другой номинал используйте туже программу расчетку, что и к схеме выше.

на специализированных интегральных микросхемах смотри здесь.

Стандартная схема двухтактного импульсного DC-DC на микросхеме TL494, работает с частотой 112 кГц. На выходе схемы стоят высоковольтные выпрямительные диоды удваивающие вольты. В схеме в качестве Т1 применяется готовый высокочастотный трансформатор марки EL33-ASH из блока питания сгоревшего принтера . Измерив сопротивления обмоток выяснилось, что соотношение их (I к II) - 1:20.


Защиту схемы от перегрузки и обратного включения питания можно сделать через предохранитель и диод, подсоединенные в прямом направлении на входе.

Схема DC DC из 12 В постоянного в 1000В

Работа схемы: стабильность выходного уровня такова, что при колебании тока нагрузки от 0 до 200 мкА изменение выходного "U" невозможно обнаружить по четырехзначному цифровому вольтметру, т.е. оно не превышает 0,1 %. Схема DC DC преобразователя собрано по традиционному варианту с использованием обратного выброса "U" самоиндукции. Транзистор VT1, работающий в ключевом режиме, подает на первичную обмотку трансформатора Т1 напряжение источника питания на время, равное 10...16 мкс. В момент закрывания транзистора энергия, накопленная в магнитопроводе трансформатора, преобразуется в импульс амплитудой около 250 В на вторичной обмотке (около 40 В на первичной).

Иногда возникает необходимость получить большое напряжение, обладая только питающим элементом на 1,5 вольта. В этом случае на помощь придут повышающие преобразователи напряжения DC DC. Приведенная на рисунке ниже схема преобразователя демонстрирует один из методов получения 90 В от простой батарейки 1.5 В.

Используемая в схеме DC DC преобразователя микросхема типа LT1073 (Linear Technology) работает в повышающем режиме и при входном уровне от одного вольта. Переключающий транзистор, внутри микросборки между выводами SW1 и SW2 соединяет один конец индуктивности L1 с корпусом. Магнитное поле накапливается в катушке, и после выключения транзистора через диод D1 начинает идти ток, заряжающий конденсатор C3. Диодный каскад из D1, D2, D3 (быстрые диоды с обратным напряжением 200 В, например, MUR120), C2, C3 и C4 умножает выходное напряжение в четыре раза.


Контур преобразователя замыкается через делитель напряжения (на резисторах сопротивлением 10 МОм и 24 кОм). Эти сопротивления должны быть обязательно металлоплёночными с погрешностью не более 1%. При использовании компонентов указанных на схеме DC DC и катушки индуктивности Coilcraft DO1608C-154 можно получить выходное напряжение уровнем до 90 В, но правда ток при этом будет только несколько миллиампер.

Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 1), повышающие (рис. 2) и инвертирующие (рис. 3).

Общими для всех этих видов преобразователей являются пять элементов :

  1. источник питания,
  2. ключевой коммутирующий элемент,
  3. индуктивный накопитель энергии (катушка индуктивности, дроссель),
  4. блокировочный диод,
  5. конденсатор фильтра, включенный параллельно сопротивлению нагрузки.

Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.

Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.

Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий импульсный преобразователь

Понижающий преобразователь (рис. 1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки RH и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

Рис. 1. Принцип действия понижающего преобразователя напряжения.

При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки RH, Конденсатор С1 сглаживает пульсации напряжения.

Повышающий импульсный преобразователь

Повышающий импульсный преобразователь напряжения (рис. 2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки RH с параллельно подключенным конденсатором фильтра С1. Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

Рис. 2. Принцип действия повышающего преобразователя напряжения.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии.

Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.

Инвертирующий преобразователь импульсного типа

Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки RH с конденсатором фильтра С1.

Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

Рис. 3. Импульсное преобразование напряжения с инвертированием.

Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки Rн и конденсатор фильтра С1.

Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

Импульсные преобразователи и стабилизаторы

Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД, В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.

Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией. В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульсные стабилизаторы и со смешанным регулированием.

Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.

Узлы и схемы импульсных преобразователей

Задающий генератор (рис. 4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 5, 6) на микросхеме КР1006ВИ1 работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепоч-ки подаются на транзисторные ключевые элементы, включенные параллельно.

Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%.

Рис. 4. Схема задающего генератора для импульсных преобразователей напряжения.

Рис. 5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В.

Рис. 6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В.

Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 5, 6) составляет 140 мА .

В выпрямителе преобразователя (рис. 5, 6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 — R3.

Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226).

В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х структуры п-р-п — КТ815, КТ817 (рис. 4.5) и р-п-р — КТ814, КТ816 (рис. 6) и другие.

Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер — коллектор транзистора диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.

Преобразователь с задающим генератором-мультивибратором

Для получения выходного напряжения величиной 30...80 В П. Беляцкий использовал преобразователь с задающим генератором на основе несимметричного мультивибратора с выходным каскадом, нагруженным на индуктивный накопитель энергии — катушку индуктивности (дроссель) L1 (рис. 7).

Рис. 7. Схема преобразователя напряжения с задающим генератором на основе несимметричного мультивибратора.

Устройство работоспособно в диапазоне питающих напряжений 1,0. ..1,5 В и имеет КПД до 75%. В схеме можно применить стандартный дроссель ДМ-0,4-125 или иной с индуктивностью 120.. .200 мкГн.

Вариант выполнения выходного каскада преобразователя напряжения показан на рис. 8. При подаче на вход каскада управляющих сигналов прямоугольной формы 7777-уровня (5 В) на выходе преобразователя при его питании от источника напряжением 12 В получено напряжение 250 В при токе нагрузки 3...5 мА (сопротивление нагрузки около 100 кОм). Индуктивность дросселя L1 — 1 мГн.

В качестве VT1 можно использовать отечественный транзистор, например, КТ604, КТ605, КТ704Б, КТ940А(Б), КТ969А и др.

Рис. 8. Вариант выполнения выходного каскада преобразователя напряжения.

Рис. 9. Схема выходного каскада преобразователя напряжения.

Аналогичная схема выходного каскада (рис. 9) позволила при питании от источника напряжением 28В и потребляемом токе 60 мА получить выходное напряжение 250 В при токе нагрузки 5 мА , Индуктивность дросселя — 600 мкГч. Частота управляющих импульсов — 1 кГц.

В зависимости от качества изготовления дросселя на выходе может быть получено напряжение 150...450 В при мощности около 1 Вт и КПД до 75%.

Преобразователь напряжения, выполненный на основе генератора импульсов на микросхеме DA1 КР1006ВИ1, усилителя на основе полевого транзистора VT1 и индуктивного накопителя энергии с выпрямителем и фильтром, показан на рис. 10.

На выходе преобразователя при напряжении питания и потребляемом токе 80...90 мА образуется напряжение 400...425 В . Следует отметить, что величина выходного напряжение не гарантирована — она существенно зависит от способа выполнения катушки индуктивности (дросселя) L1.

Рис. 10. Схема преобразователя напряжения с генератором импульсов на микросхеме КР1006ВИ1.

Для получения нужного напряжения проще всего экспериментально подобрать катушку индуктивности для достижения требуемого напряжения или использовать умножитель напряжения.

Схема двуполярного импульсного преобразователя

Для питания многих электронных устройств требуется источник двухполярного напряжения, обеспечивающий положительное и отрицательное напряжения питания. Схема, приведенная на рис. 11, содержит гораздо меньшее число компонентов, чем аналогичные устройства, благодаря тому, что она одновременно выполняет функции повышающего и инвертирующего индуктивного преобразователя.

Рис. 11. Схема преобразователя с одним индуктивным элементом.

Схема преобразователя (рис. 11) использует новое сочетание основных компонентов и включает в себя генератор четырехфазных импульсов, катушку индуктивности и два транзисторных ключа.

Управляющие импульсы формирует D-триггер (DD1.1). В течение первой фазы импульсов катушка индуктивности L1 запасается энергией через транзисторные ключи VT1 и VT2. В течение второй фазы ключ VT2 размыкается, и энергия передается на шину положительного выходного напряжения.

Во время третьей фазы замыкаются оба ключа, в результате чего катушка индуктивности вновь накапливает энергию. При размыкании ключа VT1 во время заключительной фазы импульсов эта энергия передается на отрицательную шину питания. При поступлении на вход импульсов с частотой 8 кГц схема обеспечивает выходные напряжения ±12 В . На временной диаграмме (рис. 11, справа) показано формирование управляющих импульсов.

В схеме можно использовать транзисторы КТ315, КТ361.

Преобразователь напряжения (рис. 12) позволяет получить на выходе стабилизированное напряжение 30 В. Напряжение такой величины используется для питания варикапов, а также вакуумных люминесцентных индикаторов.

Рис. 12. Схема преобразователя напряжения с выходным стабилизированным напряжением 30 В.

На микросхеме DA1 типа КР1006ВИ1 по обычной схеме собран задающий генератор, вырабатывающий прямоугольные импульсы с частотой около 40 кГц.

К выходу генератора подключен транзисторный ключ VT1, коммутирующий катушку индуктивности L1. Амплитуда импульсов при коммутации катушки зависит от качества ее изготовления.

Во всяком случае напряжение на ней достигает десятков вольт. Выходное напряжение выпрямляется диодом VD1. К выходу выпрямителя подключен П-образный RC-фильтр и стабилитрон VD2. Напряжение на выходе стабилизатора целиком определяется типом используемого стабилитрона. В качестве «высоковольтного» стабилитрона можно использовать цепочку стабилитронов, имеющих более низкое напряжение стабилизации.

Преобразователь напряжения с индуктивным накопителем энергии, позволяющий поддерживать на выходе стабильное регулируемое напряжение, показан на рис. 13.

Рис. 13. Схема преобразователя напряжения со стабилизацией.

Схема содержит генератор импульсов, двухкаскадный усилитель мощности, индуктивный накопитель энергии, выпрямитель, фильтр, схему стабилизации выходного напряжения. Резистором R6 устанавливают необходимое выходное напряжение в пределах от 30 до 200 В.

Аналоги транзисторов: ВС237В — КТ342А, КТ3102; ВС307В — КТ3107И, BF459—КТ940А.

Понижающие и инвертирующие преобразователей напряжения

Два варианта — понижающего и инвертирующего преобразователей напряжения показаны на рис. 14. Первый из них обеспечивает выходное напряжение 8,4 В при токе нагрузки до 300 мА , второй — позволяет получить напряжение отрицательной полярности (-19,4 В ) при таком же токе нагрузки. Выходной транзистор ѴТЗ должен быть установлен на радиатор.

Рис. 14. Схемы стабилизированных преобразователей напряжения.

Аналоги транзисторов: 2N2222 — КТЗ117А 2N4903 — КТ814.

Понижающий стабилизированный преобразователь напряжения

Понижающий стабилизированный преобразователь напряжения, использующий в качестве задающего генератора микросхему КР1006ВИ1 (DA1) и имеющий защиту потоку нагрузки, показан на рис. 15. Выходное напряжение составляет 10 В при токе нагрузки до 100 мА.

Рис. 15. Схема понижающего преобразователя напряжения.

При изменении сопротивления нагрузки на 1% выходное напряжение преобразователя изменяется не более чем на 0,5%. Аналоги транзисторов: 2N1613 — КТ630Г, 2N2905 — КТ3107Е, КТ814.

Двуполярный инвертор напряжения

Для питания радиоэлектронных схем, содержащих операционные усилители, часто требуются двухполярные источники питания. Решить эту проблему можно, использовав инвертор напряжения, схема которого показана на рис. 16.

Устройство содержит генератор прямоугольных импульсов, нагруженный на дроссель L1. Напряжение с дросселя выпрямляется диодом VD2 и поступает на выход устройства (конденсаторы фильтра С3 и С4 и сопротивление нагрузки). Стабилитрон VD1 обеспечивает постоянство выходного напряжения — регулирует длительность импульса положительной полярности на дросселе.

Рис. 16. Схема инвертора напряжения +15/-15 В.

Рабочая частота генерации — около 200 кГц под нагрузкой и до 500 кГц без нагрузки. Максимальный ток нагрузки — до 50 мА, КПД устройства — 80%. Недостатком конструкции является относительно высокий уровень электромагнитных помех, впрочем, характерный и для других подобных схем. В качестве L1 использован дроссель ДМ-0,2-200.

Инверторы на специализированных микросхемах

Наиболее удобно собирать высокоэффективные современные преобразователи напряжения , используя специально созданные для этих целей микросхемы.

Микросхема КР1156ЕУ5 (МС33063А, МС34063А фирмы Motorola) предназначена для работы в стабилизированных повышающих, понижающих, инвертирующих преобразователях мощностью в несколько ватт.

На рис. 17 приведена схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5. Преобразователь содержит входные и выходные фильтрующие конденсаторы С1, СЗ, С4, накопительный дроссель L1, выпрямительный диод VD1, конденсатор С2, задающий частоту работы преобразователя, дроссель фильтра L2 для сглаживания пульсаций. Резистор R1 служит датчиком тока. Делитель напряжения R2, R3 определяет величину выходного напряжения.

Рис. 17. Схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Частота работы преобразователя близка к 15 кГц при входном напряжении 12 В и номинальной нагрузке. Размах пульсаций напряжения на конденсаторах СЗ и С4 составлял соответственно 70 и 15 мВ.

Дроссель L1 индуктивностью 170 мкГн намотан на трех склеенных кольцах К12x8x3 М4000НМ проводом ПЭШО 0,5. Обмотка состоит из 59 витков. Каждое кольцо перед намоткой следует разломить на две части.

В один из зазоров вводят общую прокладку из текстолита толщиной 0,5 мм и склеивают пакет. Можно также применить кольца из феррита с магнитной проницаемостью свыше 1000.

Пример выполнения понижающего преобразователя на микросхеме КР1156ЕУ5 приведен на рис. 18. На вход такого преобразователя нельзя подавать напряжение более 40 В. Частота работы преобразователя — 30 кГц при UBX=15 В. Размах пульсаций напряжения на конденсаторах СЗ и С4 — 50 мВ.

Рис. 18. Схема понижающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Рис. 19. Схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5.

Дроссель L1 индуктивностью 220 мкГч намотан аналогичным образом (см. выше) на трех кольцах, но зазор при склейке был установлен 0,25 мм, обмотка содержала 55 витков такого же провода.

На следующем рисунке (рис. 19) показана типовая схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5, Микросхема DA1 питается суммой входного и выходного напряжений, которая не должна превышать 40 В.

Частота работы преобразователя — 30 кГц при UBX=5 S; размах пульсаций напряжения на конденсаторах СЗ и С4 — 100 и 40 мВ.

Для дросселя L1 инвертирующего преобразователя индуктивностью 88 мкГн были использованы два кольца К12x8x3 М4000НМ с зазором 0,25 мм. Обмотка состоит из 35 витков провода ПЭВ-2 0,7. Дроссель L2 во всех преобразователях стандартный — ДМ-2,4 индуктивностью 3 мкГч. Диод VD1 во всех схемах (рис. 17 — 19) должен быть диодом Шотки.

Для получения двухполярного напряжения из однополярного фирмой MAXIM разработаны специализированные микросхемы. На рис. 20 показана возможность преобразования напряжения низкого уровня (4,5...5 6) в двухполярное выходное напряжение 12 (или 15 6) при токе нагрузки до 130 (или 100 мА).

Рис. 20. Схема преобразователя напряжения на микросхеме МАХ743.

По внутренней структуре микросхема не отличается от типового построения подобного рода преобразователей, выполненных на дискретных элементах, однако интегральное исполнение позволяет при минимальном количестве внешних элементов создавать высокоэффективные преобразователи напряжения.

Так, для микросхемы МАХ743 (рис. 20) частота преобразования может достигать 200 кГц (что намного превышает частоту преобразования подавляющего большинства преобразователей, выполненных на дискретных элементах). При напряжении питания 5 В КПД составляет 80...82% при нестабильности выходного напряжения не более 3%.

Микросхема снабжена защитой от аварийных ситуаций: при снижении питающего напряжения на 10% ниже нормы, а также при перегреве корпуса (выше 195°С).

Для снижения на выходе преобразователя пульсаций с частотой преобразования (200 кГц) на выходах устройства установлены П-образные LC-фильтры. Перемычка J1 на выводах 11 и 13 микросхемы предназначена для изменения величины выходных напряжений.

Для преобразования напряжения низкого уровня (2,0...4,5 6) в стабилизированное 3,3 или 5,0 В предназначена специальная микросхема, разработанная фирмой MAXIM, — МАХ765 . Отечественные аналоги — КР1446ПН1А и КР1446ПН1Б. Микросхема близкого назначения — МАХ757 — позволяет получить на выходе плавно регулируемое напряжение в пределах 2,7...5,5 В.

Рис. 21. Схема низковольтного повышающего преобразователя напряжения до уровня 3,3 или 5,0 В.

Схема преобразователя, показанная на рис. 21, содержит незначительное количество внешних (навесных) деталей.

Работает это устройство по традиционному принципу, описанному ранее. Рабочая частота генератора зависит от величины входного напряжения и тока нагрузки и изменяется в широких пределах — от десятков Гц до 100 кГц.

Величина выходного напряжения определяется тем, куда подключен вывод 2 микросхемы DA1: если он соединен с общей шиной (см. рис. 21), выходное напряжение микросхемы КР1446ПН1А равно 5,0±0,25 В, если же этот вывод соединен с выводом 6, то выходное напряжение понизится до 3,3±0,15 В. Для микросхемы КР1446ПН1Б значения будут 5,2±0,45 В и 3,44±0,29 В. соответственно.

Максимальный выходной ток преобразователя — 100 мА . Микросхема МАХ765 обеспечивает выходной ток 200 мА при напряжении 5-6 и 300 мА при напряжении 3,3 В . КПД преобразователя — до 80%.

Назначение вывода 1 (SHDN) — временное отключение преобразователя путем замыкания этого вывода на общий провод. Напряжение на выходе в этом случае понизится до значения, несколько меньшего, чем входное напряжение.

Светодиод HL1 предназначен для индикации аварийного снижения питающего напряжения (ниже 2 В), хотя сам преобразователь способен работать и при более низких значениях входного напряжения (до 1,25 6 и ниже).

Дроссель L1 выполняют на кольце К10x6x4,5 из феррита М2000НМ1. Он содержит 28 витков провода ПЭШО 0,5 мм и имеет индуктивность 22 мкГч. Перед намоткой ферритовое кольцо разламывают пополам, предварительно надпилив алмазным надфилем. Затем кольцо склеивают эпоксидным клеем, установив в один из образовавшихся зазоров текстолитовую прокладку толщиной 0,5 мм.

Индуктивность полученного таким образом дросселя зависит в большей степени от толщины зазора и в меньшей — от магнитной проницаемости сердечника и числа витков катушки. Если смириться с увеличением уровня электромагнитных помех, то можно использовать дроссель типа ДМ-2,4 индуктивностью 20 мкГч.

Конденсаторы С2 и С5 типа К53 (К53-18), С1 и С4 — керамические (для снижения уровня высокочастотных помех), VD1 — диод Шотки (1 N5818, 1 N5819, SR106, SR160 и др.).

Сетевой блок питания фирмы «Philips»

Преобразователь (сетевой блок питания фирмы «Philips», рис. 22) при входном напряжении 220 В обеспечивает выходное стабилизированное напряжение 12 В при мощности нагрузки 2 Вт.

Рис. 22. Схема сетевого блока питания фирмы «Philips».

Бестрансформаторный источник питания (рис. 23) предназначен для питания портативных и карманных приемников от сети переменного тока напряжением 220 В. Следует учитывать, что этот источник электрически не изолирован от питающей сети. При выходном напряжении 9В и токе нагрузки 50 мА источник питания потребляет от сети около 8 мА.

Рис. 23. Схема бестрансформаторного источника питания на основе импульсного преобразователя напряжения.

Сетевое напряжение, выпрямленное диодным мостом VD1 — VD4 (рис. 23), заряжает конденсаторы С1 и С2. Время заряда конденсатора С2 определяется постоянной цепи R1, С2. В первый момент после включения устройства тиристор VS1 закрыт, но при некотором напряжении на конденсаторе С2 он откроется и подключит к этому конденсатору цепь L1, СЗ.

При этом от конденсатора С2 будет заряжаться конденсатор СЗ большой емкости. Напряжение на конденсаторе С2 будет уменьшаться, а на СЗ — увеличиваться.

Ток через дроссель L1, равный нулю в первый момент после открывания тиристора, постепенно увеличивается до тех пор, пока напряжения на конденсаторах С2 и СЗ не уравняются. Как только это произойдет, тиристор VS1 закроется, но энергия, запасенная в дросселе L1, будет некоторое время поддерживать ток заряда конденсатора СЗ через открывшийся диод VD5. Далее диод VD5 закрывается, и начинается относительно медленный разряд конденсатора СЗ через нагрузку. Стабилитрон VD6 ограничивает напряжение на нагрузке.

Как только закрывается тиристор VS1 напряжение на конденсаторе С2 снова начинает увеличиваться. В некоторый момент тиристор снова открывается, и начинается новый цикл работы устройства. Частота открывания тиристора в несколько раз превышает частоту пульсации напряжения на конденсаторе С1 и зависит от номиналов элементов цепи R1, С2 и параметров тиристора VS1.

Конденсаторы С1 и С2 — типа МБМ на напряжение не ниже 250 В. Дроссель L1 имеет индуктивность 1...2 мГн и сопротивление не более 0,5 Ом. Он намотан на цилиндрическом каркасе диаметром 7 мм.

Ширина обмотки 10 мм, она состоит из пяти слоев провода ПЭВ-2 0,25 мм, намотанного плотно, виток к витку. В отверстие каркаса вставлен подстроечный сердечник СС2,8х12 из феррита М200НН-3. Индуктивность дросселя можно менять в широких пределах, а иногда и исключить его совсем.

Схемы устройств для преобразования энергии

Схемы устройств для преобразования энергии показаны на рис. 24 и 25. Они представляют собой понижающие преобразователи энергии с питанием от выпрямителей с гасящим конденсатором. Напряжение на выходе устройств стабилизировано.

Рис. 24. Схема понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

Рис. 25. Вариант схемы понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

В качестве динисторов VD4 можно использовать отечественные низковольтные аналоги — КН102А, Б. Как и предыдущее устройство (рис. 23), источники питания (рис. 24 и 25) имеют гальваническую связь с питающей сетью.

Преобразователь напряжения с импульсным накоплением энергии

В преобразователе напряжения С. Ф. Сиколенко с «импульсным накоплением энергии» (рис. 26) ключи К1 и К2 выполнены на транзисторах КТ630, система управления (СУ) — на микросхеме серии К564.

Рис. 26. Схема преобразователя напряжения с импульсным накоплением.

Накопительный конденсатор С1 — 47 мкФ. В качестве источника питания используется батарея напряжением 9 В. Выходное напряжение на сопротивлении нагрузки 1 кОм достигает 50 В. КПД составляет 80% и возрастает до 95% при использовании в качестве ключевых элементов К1 и К2 КМОП-структур типа RFLIN20L.

Импульсно-резонансный преобразователь

Импульсно-резонансные преобразователи конструкции к,т.н. Н. М. Музыченко, один из которых показан на рис. 4,27, в зависимости от формы тока в ключе VT1 делятся на три разновидности, в которых коммутирующие элементы замыкаются при нулевом токе, а размыкаются — при нулевом напряжении. На этапе переключения преобразователи работают как резонансные, а остальную, большую, часть периода — как импульсные.

Рис. 27. Схема импульсно-резонансного преобразователя Н. М. Музыченко.

Отличительной чертой таких преобразователей является то, что их силовая часть выполнена в виде индуктивно-емкостного моста с коммутатором в одной диагонали и с коммутатором и источником питания в другом. Такие схемы (рис. 27) отличаются высокой эффективностью.

Как вы знаете, для того чтобы зажечь белые и синие светодиоды нужно как минимум 3В, в отличие от красных которые могут светиться от 1,2 до 1,5 вольт в зависимости от типа.

Чтобы белый светодиод начал светится от одной батареи на 1,5 вольт необходимо построить электронную схему под названием . Эти устройства, как правило, используется для получения более высокого выходного напряжения по сравнению с входным постоянным током (DC).

В цепях с переменным током эту функцию . Что бы получить более высокое выходное напряжение достаточно, чтобы соотношение количества витков вторичной обмотки к числу первичной было больше 1 (коэффициент трансформации > 1).

Описание работы преобразователя для светодиода

Возвращаясь к нашему преобразователю постоянного тока, есть множество различных вариантов реализации DC-DC преобразования, многие из которых достаточно сложные. В нашем случае, цель состоит в создании схемы простого и эффективного преобразователя для повышения напряжения от 1,5 В до 3,5 В. Ниже приведена схема подобного DC-DC преобразователя для светодиодов.

Для намотки дросселя необходим феррит, форма и размер которого может быть любыми, но лучше применить сердечник типа «кольцо» (или тора) 1…1,5 см в диаметре. Такой, как правило, используется в качестве фильтра на силовых проводах питания (черный блок рядом с разъемом), также его можно найти в импульсных источниках питания, видеомагнитофонов, сканеров и т.д. Обмотка выполнена проводом ПЭВ-2 диаметром 0,4 мм и содержит 30 витков.

Электронная схема очень проста: она состоит из катушки, двух транзисторов, одного конденсатора и двух резисторов. Набор не впечатляет, но со своей целью справляется. Ток потребления составляет 25 мА, что эквивалентно примерно 50 часам непрерывной работы аккумулятора типа АА. Схема работает достаточно хорошо, обеспечивая средний уровень свечения светодиода.