Стабилизатор своими руками — схемы и рекомендации как сделать выпрямитель. Установка и подключение самодельного устройства. Схема электрическая стабилизатора Сделай сам стабилизатор релейный 220в

Бытовая техника восприимчива к перепадам напряжения: она быстрее изнашивается и выходит из строя. А в сети вольтаж часто скачет, проваливается или вовсе обрывается: это связано с удаленностью от источника и несовершенством линий электропередач.

Чтобы питать приборы током с устойчивыми характеристиками, в квартирах используют стабилизаторы напряжения. Независимо от параметров вводимого в устройство тока на его выводе он будет обладать почти неизменными параметрами.

Выравнивающее ток устройство можно купить, выбирая из широкого (отличия по мощности, принципу действия, управлению и параметром выводимого напряжения). Но наша статья посвящена тому, как сделать стабилизатор напряжения своими руками. Оправдана ли в этом случае самоделка?

У самодельного стабилизатора есть три преимущества:

  1. Дешевизна . Все детали покупаются отдельно, а это экономически выгодно по сравнению с теми же деталями, но уже собранными в единое устройство – выравниватель тока;
  2. Возможность ремонта своими руками . Если один из элементов купленного стабилизатора вышел из строя, вряд ли вы его сможете заменить, даже если разбираетесь в электротехнике. Вы просто не найдете, чем заменить износившуюся деталь. С самодельным устройством все проще: вы изначально все элементы купили в магазине. Останется лишь снова сходить туда и купить то, что поломалось;
  3. Легкий ремонт . Если вы сами собрали преобразователь напряжения, то вы знаете на 100% его . А понимание устройства и действия поможет вам быстро выявить причину выхода из строя стабилизатора. Выяснив ее, вы без труда почините самодельный агрегат.

У стабилизатора собственного производства есть три серьезных минуса:

  1. Низкая надежность . На специализированных предприятиях устройства более надежны, поскольку их разработка основана на показаниях высокоточных контрольно-измерительных приборов, которых в быту не найти;
  2. Широкий диапазон выводимого напряжения . Если стабилизаторы промышленного производства могут выдавать относительно постоянный вольтаж (например, 215-220В), то самодельные аналоги могут иметь в 2-5 раз больший диапазон, что может быть критичным для сверхчувствительной к изменению тока техники;
  3. Сложная настройка . Если вы покупаете стабилизатор, то этап настройки минуется, вам останется лишь подключить устройство и управлять его работой. Если же вы создатель выравнивателя тока, то и вам его настраивать. Это трудно, даже если вы изготовили самый простой стабилизатор напряжения своими руками.

Самодельный выравниватель тока: характеристики

Стабилизатор характеризуется двумя параметрами:

  • Допустимый диапазон вводимого напряжения (Uвх);
  • Допустимый диапазон выводимого напряжения (Uвых).

В этой статье рассматривается симисторный преобразователь тока, потому что он обладает высокой эффективностью. Для него Uвх составляет 130-270В, а Uвых – 205-230В. Если большой диапазон входного напряжения – это преимущество, то для выходного – это недостаток.

Однако для бытовой техники этот диапазон остается допустимым. Это легко проверить, потому что допустимыми колебаниями вольтажа являются скачки и провалы не более 10%. А это 22,2 Вольта в большую или меньшую сторону. Значит допустимо изменение вольтажа от 197,8 до 242,2 Вольта. По сравнению с этим диапазоном ток на нашем симисторном стабилизаторе получается еще ровнее.

Подходит устройство для подключения к линии нагрузкой не больше 6 кВт. Ее переключение осуществляется за 0,01 секунды.

Конструкция стабилизирующего ток устройства

Самодельный стабилизатор напряжения 220В, схема которого представлена выше, включает в себя следующие элементы:

  • Блок питания . Для него использованы накопители С2 и С5, трансформатор напряжения Т1, а также компаратор (сравнивающее устройство) DA1 и светодиод VD1;
  • Узел, откладывающий начало нагрузки. Для его сборки понадобятся сопротивления от R1 до R5, транзисторы от VT1 до VT3, а также накопитель С1;
  • Выпрямитель , замеряющий значение вольтажных скачков и провалов. В его конструкцию входит светодиод VD2 с одноименным стабилитроном, накопитель С2, резистором R14 и R13;
  • Компаратор. Для него понадобятся сопротивления от R15 до R39 и сравнивающие устройства DA2 с DA3;
  • Контроллер логического типа . Для него нужны микросхемы DD от 1 до 5;
  • Усилители . Для них понадобятся сопротивления для ограничения тока R40-R48, а также транзисторы от VT4 до VT12;
  • Светодиоды, играющие роль индикатора, — HL от 1 до 9;
  • Оптронные ключи (7) с симисторами VS от 1 до 7, резисторами R от 6 до 12 и оптронными симисторами U от 1 до 7;
  • Автовыключатель с предохранителем QF1;
  • Автотрансформатор Т2.

Как будет работать этот аппарат?

После включения в сеть накопителя узла с отложенной нагрузкой (С1) еще разряжен. Транзистор VT1 включается, а 2 и 3 – закрываются. Через последний впоследствии пойдет ток на светодиоды и оптронные симисторы. Но пока транзистор закрыт, диоды не дают сигнал, и симисторы еще закрыты: нагрузки нет. Но ток уже идет через первый резистор к накопителю, который начинает накапливать энергию.

Описанный выше процесс занимает 3 секунды, после чего срабатывает триггер Шмитта, основанный на транзисторах VT 1 и 2, после чего включается транзистор 3. Теперь можно считать нагрузку открытой.

Выходящее напряжение с третьей обвивки трансформатора на блоке питания выравнивается вторыми диодом и конденсатором. Затем ток направляет к R13, проходит по R14. На данный момент напряжение пропорционально вольтажу в сети. Затем ток подается компараторам не инвертирующим. Тут же на инвертирующие сравнивающие устройства входит уже выровненный ток, который подается на сопротивления от 15 до 23. Затем подключается контроллер, обрабатывающие входные сигналы на устройствах для сравнения.

Нюансы стабилизации в зависимости от подаваемого на вход напряжения

Если вводится напряжение до 130 Вольт, то на выводах компараторов обозначается логический уровень (ЛУ) низкого вольтажа. Четвертый транзистор открыт, а светодиод 1 моргает и говорит о том, что наблюдается сильный провал в линии. Вы должны понять, что стабилизатор не в состоянии выдать напряжение нужной величины. Поэтому все симисторы закрыты, и нагрузка отсутствует.

Если вольтаж на вводе составляет 130-150 Вольт, то на сигналах 1 и А наблюдается высокий ЛУ, однако для других сигналов он по-прежнему низкий. Включается пятый транзистор, светится второй диод. Оптронный симистор U1.2 и симистор VS2 открываются. Нагрузка пойдет по последнему и дойдет до вывода обвивки второго автотрансформатора сверху.

При входном вольтаже 150-170 Вольт высокий ЛУ наблюдается на 1, 2 и В сигналах, на остальных он все еще низкий. Тогда включается шестой транзистор и включается третий диод, включается VS2 и ток подается на второй (если считать сверху) вывод обвивки второго автотрансформатора.

Аналогично описывается работа стабилизатора при диапазонах напряжения 170-190В, 190-210В, 210-230В, 230-250В.

Изготовление печатной платы

Для симисторного преобразователя тока нужна печатная плата, на которой будут размещаться все элементы. Ее размер: 11,5 на 9 см. Для ее изготовления понадобится стеклотексолит, покрытый фольгой с одной стороны.

Плату можно напечатать на принтере лазерного типа, после чего в ход пойдет утюг. Изготовить плату самостоятельно удобно с помощью программы Sprint Loyout. А схема размещения элементов на ней приведена ниже.

Как сделать трансформаторы Т1 и Т2?

Первый трансформатор Т1 мощностью 3 кВт изготавливается с использованием магнитопровода с площадью поперечного сечения (ППС) 187 кв. мм. И трех проводов ПЭВ-2:

  • Для первой обвивки ППС всего 0,003 кв. мм. Количество витков – 8669;
  • Для второй и третьей обмоток ППС всего 0,027 кв. мм. Количество витков – 522 на каждой.

Если же нет желания наматывать провод, то можно приобрести два трансформатора ТПК-2-2×12В и соединить их последовательно, как на рисунке ниже.

Чтобы изготовить автотрансформатор второй мощностью в 6 кВт, вам понадобится тороидальный магнитопровод и провод ПЭВ-2, из которого будет сделана обвивка в 455 витков. И тут нужны отводы (7 штук):

  • Обвивка 1-3 отводов из провода с ППС 7 кв. мм;
  • Обвивка 4-7 отводов из провода с ППС 254 кв. мм.

Что купить?

В магазине электро и радиотехники купите (в скобках обозначение на схеме):

  • 7 оптронных симисторов MOC3041или 3061 (U от 1 до 7);
  • 7 простых симисторов BTA41-800B (VS от 1 до 7);
  • 2 светодиода DF005M или КЦ407А (VD 1 и 2);
  • 3 резистора СП5-2, можно 5-3 (R 13, 14, 25);
  • Выравнивающий ток элемент КР1158ЕН6А или Б(DA1);
  • 2 сравнивающих устройства LM339N или К1401СА1 (DA 1 и 2);
  • Включатель с предохранителем;
  • 4 конденсатора пленочных или керамических (С 4, 6, 7, 8);
  • 4 конденсатора оксидных (С 1, 2, 3, 5);
  • 7 сопротивлений для ограничения тока, на их выводах он должен быть равен 16 мА (R от 41 до 47);
  • 30 сопротивлений (любых) с допуском 5%;
  • 7 сопротивлений С2-23 с допуском от 1% (R от 16 до 22).

Особенности сборки устройства для выравнивания напряжения

Микросхема стабилизирующего ток устройства устанавливается на теплоотводе, для которого подходит пластинка из алюминия. Ее плошать не должна быть меньше 15 кв. см.

Теплоотвод с охлаждающей поверхностью необходим и симисторам. Для всех 7 элементов достаточно одного теплоотвода с площадью не меньше 16 кв. дм.

Чтобы изготавливаемый нами преобразователь переменного напряжения работал, понадобится микроконтроллер. С его ролью отлично справляется микросхема КР1554ЛП5.

Вы уже знаете, что в схеме можно найти 9 мигающих диодов. Все они расположены на ней так, чтобы они попадали в отверстия, которые имеются на лицевой панели устройства. И если корпус стабилизатора не допускает их расположения, как на схеме, то вы можете видоизменить ее так, чтобы светодиоды выходили на ту сторону, которая будет для вас удобна.

Вместо мигающих светодиодов допускается использование немигающих. Но в таком случае нужно брать диоды с ярким красным свечением. Подходят элементы марок: АЛ307КМ и L1543SRC-Е.

Теперь вы знаете, как сделать стабилизатор напряжения на 220 вольт. И если ранее вам уже приходилось делать что-то подобное, то эта работа для вас не окажется сложной. В результате вы сможете сэкономить несколько тысяч рублей на покупке стабилизатора промышленного производства.

Отличие подаваемого напряжения от эталонных 220 В может быть обусловлено как качеством трансформаторов и проводов, так и удаленностью потребителя от распределяющего устройства. Также одним из важных факторов, влияющих на стабильность напряжения, является физический износ, и перегрузка линий электропередач. Все это приводит к просадкам и скачкам вольтажа, что отрицательно сказывается на всех без исключения электроприборах.

Стабилизаторы напряжения на 220 В решают эту проблему. Схема подобных устройств позволяет сглаживать скачки в сети, и получать на выходе стабильные 220 Вольт с небольшой допустимой погрешностью. При этом не обязательно покупать такой аппарат – при желании и минимальных знаниях схемотехники его можно собрать своими руками в домашних условиях.

Разновидности стабилизаторов

Все промышленные образцы такого оборудования можно разделить на две большие группы:

  • электромеханические;
  • импульсные.

Электромеханические

Работа электромеханических устройств основана на сервоприводе, который способен изменять количество витков обмотки (а значит – и выходящее напряжение) перемещением токопроводящего ползунка по реостату. Такие аппараты дешевле всех других моделей, и обладают очень хорошими показателями стабилизации. Однако они чаще ломаются из-за наличия множества механических деталей.

Но самый главный их минус – скорость срабатывания. Из-за того, что привод перемещает токосниматель не мгновенно, задержка стабилизации может составлять до 0.1 секунды, что катастрофически много для приборов, чувствительных к перепадам. Другими словами, такой стабилизатор может попросту не успеть защитить современную электронику. К тому же, ввиду наличия механических частей, воспроизвести такой прибор дома – нетривиальная задача.

Импульсные

Импульсными называют стабилизаторы, работа которых основывается на принципе накапливания тока, и выдачи его потребителю отрывками – импульсами. Эти временные промежутки позволяют системе накопить нужный ток в , и после выдать стабилизированное питание. К таким аппаратам относят и приборы, работа которых основана на симисторах и тиристорах.

Подобные устройства дороже своих электромеханических аналогов, но и значительно надежнее – нет трущихся и движущихся частей, а значит, и ломаться, по сути, нечему. Правда показатели стабилизации у них хуже – они способны лишь на пропорциональное повышение или понижение входящих показателей. Зато скорость срабатывания – до 20 миллисекунд, а этого достаточно, чтобы обезопасить даже самые чувствительные домашние электроприборы. К тому же – такой аппарат можно собрать своими руками, обладая необходимой сноровкой и элементной базой.

Кроме разделения по принципу стабилизации, существует разделение на одно- и трехфазные устройства. Но ввиду того, что дома обычно используется однофазное питание, трехфазные аппараты мы в расчет не берем.

Схема стабилизатора напряжения на 220 В

В схеме, которую мы рассмотрим как пример создания стабилизатора своими руками, используются симисторы. Благодаря хорошо подобранной элементной базе, этот прибор сможет обеспечивать стабильные показатели при подаче на него от 130 до 270 В, и будет выдерживать подключение к нему нагрузки до 6 кВт. Но самое главное – скорость срабатывания – около 10 мс! Вот сама схема будущего стабилизатора напряжения на 220 В:

Не смотря на кажущуюся сложность схемы стабилизатора напряжения на 220 В, в производстве подобного прибора своими руками проблем возникнуть не должно, если вы обладаете хотя бы начальными знаниями в электрике. Итак, список комплектующих, необходимых для успешной сборки:

  • Блок питания;
  • Выпрямитель (корректирующий амплитуду напряжения);
  • Контроллер и компаратор;
  • Усилительный каскад;
  • Устройство задержки включения нагрузки;
  • Автоматический трансформатор;
  • Ключи;
  • Выключатель с функцией предохранителя.

Также будут необходимы провода для соединения элементов и намотки трансформаторов, печатная плата для сборки схемы, а из инструментов – паяльник, припой и пинцет.

Процесс изготовления стабилизатора на 220 В своими руками

Для начала нужно взять подходящий по размерам (примерно 120×90 мм) кусок фольгированного текстолита для изготовления печатной платы. Саму схему можно перенести на плоскость при помощи утюга и распечатанной на бумаге принципиальной схемы:

Получив необходимую архитектуру, можно приступать к намотке трансформаторов (можно купить и готовые ТПК-2-2, на 12В и соединить их последовательно, но можно изготовить самостоятельно). Для намотки каждого транса потребуется магнитопровод сечением 1.87 см 2 и три провода. Первая обмотка – 8669 витков провода сечением 0.064 мм. Две другие обмотки выполняются уже проводом с площадью сечения 0.185 мм, и каждая из них будет содержать по 522 витка.

Второй трансформатор отличается – он собирается на тороидальном магнитопроводе, но количество витков уже будет 455. Второй трансформаторный блок должен содержать 7 отводов, и если для первых трех достаточно провода 3мм 2 , то для остальных необходимо применять шину с площадью сечения не менее 18 мм 2 . Это позволит избежать нагревания при работе устройства, и повысит общую безопасность.

После сборки трансформаторов, их необходимо соединить последовательно согласно схеме, приведенной ниже:

Остальные комплектующие для сборки нужно покупать. Приобретя все необходимое, можно приступать к сборке прибора согласно принципиальной электрической схеме. Важно помнить, что микросхема контроллера и симисторы необходимо монтировать на охлаждающем радиаторе с применением термопроводящей пасты или клея.

Собрав все элементы воедино, вы получите надежный и качественный прибор с характеристиками, которые удовлетворят все бытовые потребности обычного жилого дома.

Если же подобная схема для вас сложна – лучше выбрать иной вариант самодельного стабилизатора, к примеру – релейный тип. Схема такого стабилизатора на 220 В не такая сложная, как у симисторного варианта, и ее обычно приводят как пример во всех журналах для радиолюбителей:

Схема проста, и содержит в себе 3 блока стабилизации, с разным порогом напряжения. Каждый из них состоит из стабилитрона и резисторов. Кроме блоков, в схеме есть два транзисторных ключа, управляющих электромагнитными реле. Благодаря простоте и относительной надежности, такой прибор станет отличной альтернативой более сложным устройствам.

Плюсы и минусы самодельного стабилизатора

Среди положительных моментов такого аппарата стоит отметить:

  • Довольно высокие показатели стабилизации, достаточные для бытовых нужд;
  • Низкая цена в сравнении с фабричными устройствами;
  • Доступность самостоятельного ремонта.

Однако помимо достоинств, такой стабилизатор будет обладать и рядом недостатков:

  • Сборка своими руками уступает по качеству фабричной (пайка, намотка трансформаторов и т.д.);
  • Сложная и кропотливая настройка готового прибора;
  • Отсутствие возможности получить точные данные стабилизации ввиду отсутствия специального оборудования.

В заключении хотелось бы сказать, что при отсутствии хотя бы начальных навыков в схемотехнике и опыта пайки радиодеталей, браться за сборку такого устройства не стоит, так как это ответственный и важный узел в электросети дома, от которого зависит сохранность всех электроприборов.

Основные данные по конструкции стабилизатора напряжения есть в этом видео :

Напряжение электросети у потребителей значительно отличается в связи с потерями в линии. Снижение напряжения может достигать значительных величин и вызвать сбой в работе приборов и устройств. Особенно страдают от нестандартного напряжения бытовые приборы оснащённые электродвигателями: холодильники, стиральные машины, пылесосы, водяные насосы и электроинструмент.

Повышенное напряжение электросети ведёт к интенсивному нагреву обмоток электродвигателя и износу коллектора, пробою изоляции. Пониженное напряжение оказывает не лучшее влияние: не запускаются электродвигатели или включаются рывками, что приводит к преждевременному износу пускорегулирующей аппаратуры.

Выход из создавшего положения довольно прост - установить вольтодобавочный трансформатор, суммарное напряжение вторичной обмотки и электросети станет близким к стандартному напряжению питания. Отрицательного влияния на электросеть такое устройство не оказывает. Наличие устройства поддержания напряжения электросети позволяет защитить электроприборы как от повышенного, так и от пониженного значения.

В данном устройстве силовой трансформатор небольшой мощности используется для увеличения напряжения при неизменной мощности потребления. В реальном устройстве достаточно несколько увеличить напряжение электросети вольтодобавкой, а затем стабилизировать. Разница входного и выходного напряжения используется на компенсацию при пониженном напряжении, повышенное напряжение сети снижается транзисторным регулятором.

Характеристики прибора:
Напряжение электросети 160-250 Вольт.
Вторичное напряжение 220 Вольт.
Мощность нагрузки до 2000 Ватт.
Ток нагрузки до 5 Ампер.
Вес 2кг.

Цена прибора в основном состоит из цены силового трансформатора типа ТС180-ТС320 от старых телевизоров и не превышает 500 рублей. Хорошо зарекомендовали трансформаторы типа ТН или ТПП с током вторичных обмоток в 6-8 Ампер при общем напряжении вторичных обмоток 24-36 Вольт. Схема устройства стабилизации напряжения состоит: из силового трансформатора T1, мощного диодного моста VD1 силовой цепи и ключевого транзистора VT1.

Цепи отслеживания напряжения ошибки состоят из диодного моста VD2 и усилителя ошибки на параллельном стабилизаторе DA1.

Повышение напряжения в сети приводит к увеличению напряжения во вторичной обмотке силового трансформатора 3Т1,напряжение на конденсаторе С3 увеличивается, что приводит к открыванию параллельного стабилизатора DA1 и шунтированию напряжения на резисторе R7.Напряжение на затворе полевого транзистора VT1 падает и приводит к его закрытию, что ограничивает вторичное напряжение на клеммах ХТ3, ХТ4.

Пониженное напряжение электросети приводит к обратному процессу - снижению напряжения на вторичных обмотках трансформатора, закрытию параллельного стабилизатора на м/с DA1 и открытию полевого транзистора VT1, что приводит к увеличению напряжения на вторичных обмотках.

Наладка схемы заключается в установке пределов стабилизации выходного напряжения. После включения (желательно на активную нагрузку в виде настольной лампы) резистором R5 выставляется выходное напряжение 225 вольт, подключив более мощную нагрузку в 1-1,5 квт (с соблюдение техники безопасности) - подкорректировать в пределах 220 Вольт.

Через 5-10 минут работы устройство и нагрузку отключить от электросети, проверить тепловые режимы всех радиодеталей, они не должны быть горячими, в ином случае увеличить радиатор ключевого транзистора.

Ввиду разброса усиления мощного полевого транзистора N-типа, начальное смещение можно подкорректировать подбором сопротивления резистора R4 -тока затвора. Транзистор закрепить на радиаторе 50*50*20мм через слюдяную прокладку.

Печатный монтаж схемы и трансформатор установлены в подходящем корпусе размеры которого зависят от габаритов трансформатора Т1. Индикатор работы устройства HL1 и выключатель сети SA1 с предохранителями FU1, FU2 - расположены сверху и сбоку корпуса.

При использовании металлического корпуса применить сетевую вилку с заземляющим ножом, вывод которого подключить к корпусу.

Радиодетали устройства в основном заводского исполнения, трансформатор используется без переделки: вторичная обмотка 2Т1 состоит из двух параллельных обмоток на 36 вольт, третья обмотка 3Т1 напряжением 6,3 вольта. Резисторы типа МЛТ или С29 .Подстроечные типа СП или СПО.

Силовые провода, обозначенные на схеме более толстыми линиями выполнить многожильным проводом сечением не менее 4мм., остальные соединения 0,5 мм.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 ИС источника опорного напряжения

TL431

1 В блокнот
VT1 MOSFET-транзистор

IRF840

1 В блокнот
VD1 Диодный мост

RS805

1 В блокнот
VD2 Выпрямительный диод

RL102

4 В блокнот
VD3 Стабилитрон КС156Б 1 В блокнот
С1 Конденсатор 0.1 мкФ 400 В 1 В блокнот
С2 10 мкФ 450 В 1 В блокнот
С3 Электролитический конденсатор 47 мкФ 25 В 1 В блокнот
С3 Конденсатор 1000 пФ 1 В блокнот
С4 Конденсатор 0.22 мкФ 1 В блокнот
R1 Резистор

56 кОм

1 2 Вт В блокнот
R2 Резистор

2.2 кОм

1 В блокнот
R3 Резистор

1.5 кОм

1 В блокнот
R4 Резистор

82 кОм

1 1 Вт В блокнот
R5 Переменный резистор 22 кОм 1 В блокнот
R6 Резистор

1 кОм

1 В блокнот
R7 Резистор

Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования , в отличие от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Электромеханический стабилизатор

Сервоприводный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Плата измерения напряжения;
  • Автотрансформатор;
  • Серводвигатель;
  • Графитовый скользящий контакт;
  • Плата индикации.

В основе работы лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.

Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.

При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.

Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.

Релейный стабилизатор

В релейном стабилизаторе имеется почти такой же набор основных узлов:

  • Сетевой фильтр;
  • Плата контроля и управления;
  • Трансформатор;
  • Блок электромеханических реле;
  • Устройство индикации.

В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.

Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. имеют самую низкую цену среди этих приборов.

Пример схемы релейного стабилизатора

Еще одна схема стабилизатора релейного типа

Электронный стабилизатор

Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:

  • Фильтр сети;
  • Плата измерения напряжения и управления;
  • Трансформатор;
  • Блок силовых электронных ключей;
  • Плата индикации.

Принцип работы не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.

Стабилизатор двойного преобразования

Это устройство, называемое так же , по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками. Часть схем рассматривают стабилизатор без защиты от КЗ в нагрузке, в других заложена возможность плавного регулирования напряжения от 0 до 20 Вольт. Ну а отличительной чертой отдельных схемы является возможность защиты от короткого замыкания в нагрузке.


5 очень простых схем в основном собранных на транзисторах, одна из них, с защитой от КЗ

Очень часто бывает когда для питания вашей новодельной электронной самоделки требуется стабильное напряжение, которое не меняется от нагрузки, например, 5 Вольт или 12 Вольт для питания автомагнитолы. И чтобы сильно не заморачиваться с конструированием самодельного блока питания на транзисторах, используются так называемые микросхемы стабилизаторы напряжения. На выходе такого элемента мы получим напряжение, на которое спроектирован этот прибор

Многие радиолюбители уже неоднократно собирали схемы стабилизаторов напряжения на специализированных микросхемах серий 78хх, 78Мхх, 78Lxx. Например, на микросхеме KIA7805 можно собрать самодельную схему рассчитаную на выходное напряжение +5 В и максимальный ток нагрузки 1 А. Но мало кто знает, что имеются узко специализированный микросхемы серии 78Rxx, которые сочитают в себе стабилизаторы напряжения положительной полярности с малым напряжением насыщения, которое не превышает 0, 5 В при токе нагрузки 1 А. Одну из этих схем мы и рассмотрим более подробно.

Регулируемый трехвыводной стабилизатор положительного напряжения LM317 обеспечивает ток нагрузки 100 мА в диапазоне выходного напряжения от 1.2 до 37 В. Стабилизатор очень удобен в применении и требуют только два внешних резистора для обеспечения выходного напряжения. Кроме того, нестабильность по напряжению и току нагрузки у стабилизатора LM317L имеет лучшие показателями, чем у традиционных стабилизаторов с фиксированным значением выходного напряжения.

Для стабилизации напряжения постоянного тока достаточно большой мощности в числе других применяются компенсационные стабилизаторы непрерывного действия. Принцип действия такого стабилизатора заключается в поддержании выходного напряжения на заданном уровне за счет изменения падения напряжения на регулирующем элементе. При этом величина управляющего сигнала, поступающего на регулирующий элемент, зависит от разницы между заданным и выходным напряжениями стабилизатора.

При стационарной эксплуатации аппаратуры, CD и аудиоплейеров возникают проблемы с БП. Большинство блоков питания, выпускаемых серийно отечественным производителем, (если быть точным) практически все не могут удовлетворить потребителя, так как содержат упрощенные схемы. Если говорить об импортных китайских и им подобных блоках питания, то они, вообще, представляют интересный набор деталей "купи и выброси". Эти и многие другие проблемы заставляют радиолюбителейно изготовлять блоки питания. Но и на этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Данная радиолюбительская разработка представлена как вариант нетрадиционного включения операционного усиителя, ранее опубликованного и вскоре забытого

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша конструкция работает от напряженияпять вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Стабилизатор напряжения на 220 вольт