Все типы движителей для катеров и кораблей. Движители, методы их расчета. Типы судовых движителей. Краткие сведения из теории движителей. Новые типы движителей для плавсредств

К важнейшим составным частям судовых энергетических установок относятся элементы передачи мощности. Под этим понимаются все элементы, участвующие в передаче крутящего момента от коленчатого вала или ротора в турбинах к гребному винту. Типовая дизельная энергетическая установка с двумя среднеоборотными дизелями показана на рисунке. Она включает в себя муфты, одноступенчатый редуктор, валопровод и гребной винт. В энергетических установках с малооборотными дизелями редуктор отсутствует, в турбинных и энергетических установках с высокооборотными дизелями ставят двух- и трехступенчатые редукторы. В дизель- и турбоэлектрических энергетических установках предусмотрены электродвигатели.

Дизель-редукторная энергетическая установка со среднеоборотными дизелями

1 - муфте; 2 - редуктор; 3 - валопровод; 4 - гребной винт

Муфта соединяет узлы, выполняющие вращательные движения. Муфта предназначена для передачи крутящего момента от ведущего вала к ведомому, а также для сглаживания незначительных продольных, радиальных, угловых отклонений и крутильных колебаний. В зависимости от конструкции, назначения и принципа действия различают жесткие (глухие), упругие, фрикционные, гидродинамические и электромагнитные муфты. В судовых установках встречаются все виды муфт в зависимости от типа, мощности и конструкции главного двигателя. В установках, не имеющих передаточных механизмов (например, в малооборотных дизелях), чаще всего применяют жесткие муфты (рис. а, b). Фланцы жесткой муфты в разогретом состоянии запрессованы на вал или на конус и дополнительно зафиксированы призматической шпонкой. В энергетических установках с редуктором связь между редуктором и двигателем, а также с валом гребного винта осуществляется со стороны двигателя чаще всего через соединительную муфту, а со стороны гребного винта - через разобщительную. На рис. е показана упругая муфта. Она состоит из двух оснований, соединенных между собой гибкими прокладками, изготовленными из специальной резины. Такие муфты винтами крепятся к фланцам вала. Они могут передавать моменты независимо от направления вращения. За счет гибких вкладышей возможно выравнивание при перекашивании валов относительно друг друга.

Работа гидродинамических муфт основывается на гидравлическом принципе, схематично показанном на рис. с. Это можно представить себе так: насос, приводимый в движение двигателем, отсасывает жидкость из резервуара, и нагнетает ее в турбину. Жидкость под определенным давлением протекает через лопатки турбины, приводя ее в движение, и затем течет обратно в резервуар. При одинаковых размерах роторов насоса и турбины агрегат работает как гидравлическая муфта, при различных - он превращается в гидротрансформаторную передачу, позволяющую изменять частоту вращения ведомого вала. На практике роторы насосов и турбин находятся в специальном корпусе (рис. d). Действие гидродинамической муфты основывается на энергообмене между двумя полумуфтами (рис. d) с помощью рабочей среды и циркуляции жидкости. Эта циркуляция возникает только в том случае, когда первичная сторона и турбина имеют равные частоты вращения. У гидравлических муфт, используемых на судах, это скольжение составляет от 1,5 до 3%.


Судовые муфты

а, b - жесткие (глухие) муфты: 1 - полумуфта; 2 - фланец; 3 - шпоночная канавка со шпонкой. с - схема гидромуфты: 1, 2 - насосы; 3 - цистерна. d - схема гидромуфты (турбо-муфты); е - гибкая муфта. 4 - фланец; 5 - элемент муфты. f - электромагнитная муфта.

В судовых главных двигателях довольно часто применяют также электромагнитные индукционные скользящие муфты. Принцип действия подобной муфты состоит в использовании вращающего момента, возникающего вследствие воздействия вращающегося магнитного поля на индукционные токи. Внутренняя часть муфты расположена на ведущем вале. Обмотки полюсов через щетки и контактные кольца питаются постоянным током. Внешняя часть муфты имеет обмотку в виде беличьей клетки. Когда внешняя часть, приводимая в движение двигателем через вал, начинает вращаться и возбуждается, она вместе с валом, связанным с ней и ведущим, например, к редуктору, попадает в область вращения магнитного поля. За счет этого в обмотке типа беличьей клетки этой части муфты возникают индукционные токи. Эти токи, взаимодействуя с силовыми линиями магнитного поля, обусловливают возникновение момента вращения, вследствие чего внешняя часть муфты начинает вращаться вместе с внутренней. Таким образом вращение, мощность и момент вращения передаются от двигателя к валу редуктора. Часть муфты с обмоткой типа беличьей клетки должна - аналогично гидродинамической и электромагнитной муфте - вращаться медленнее, чем вращающееся магнитное поле, так как при одинаковой скорости вращения обеих частей не могли бы возникнуть индуктированные токи и передача вращающего момента была бы невозможна. Поэтому и в данном случае имеет место так называемое скольжение муфты. Редуктор главного двигателя должен передавать момент вращения и так изменять его частоту вращения, чтобы она имела оптимальную величину, необходимую для нормальной работы гребного винта. На судах чаще всего применяют механические редукторы, состоящие из зубчатых колес. С введением планетарного редуктора появилась возможность значительно уменьшить размеры и общую массу. В последнее время на новых судах все чаще используют планетарные редукторы в энергетических установках со среднеоборотными дизелями, газовыми или паровыми турбинами.


Механический судовой редуктор

а - суммирующий; b - планетарный. 1 - вал турбины высокого давления; 2 - вал турбины низкого давления; 3, 5, 8, 9 - центральные солнечные шестерни; 4 - водило; 6 - свободный эпицикл; 7 - вал; 10 - тормозной эпицикл; 11 - свободное водило; 12 - полый вал; 13 - зубчатые колеса (3-я ступень); 14 - приводное зубчатое колесо гребного вала; 15 - гребной вал; 16 - гребной винт

Валопровод соединяет приводной двигатель с гребным винтом. Гребной вал, который в зависимости от расположения машинного отделения на судне может состоять из одной или нескольких соединенных через глухие муфты частей, должен передавать момент вращения двигателя на гребной винт. Гребной вал опирается на радиальные подшипники. Концевая часть проходит в уплотнительном сальнике, который предохраняет туннель гребного вала от попадания морской воды. На конусообразной концевой части гребного вала закреплен гребной винт (рис. а). Осевое давление, действующее со стороны гребного винта и передаваемое дальше через вал, воспринимается упорным подшипником. Принцип действия упорного подшипника изображен на рис. d-е. Такой подшипник старого типа состоит из взаимодействующего с опорными поверхностями гребня давления; опорные поверхности залиты металлом. На переднем ходу функционирует одна поверхность гребня давления, на заднем - другая.



Валопровод

а - общий вид; b - полумуфта; с - упорный подшипник; d, e - принцип действия упорного подшипника. 1 - гребной вал; 2 - сальник; 3 - полу- подшипник; 6 - переборочный сальник; 7 - муфта; 4 - промежуточный вал; 5 - опорный упорный подшипник; 8 - упорный вал

Гребной винт в настоящее время является почти единственным типом движителя. Он состоит из нескольких лопастей, радиально укрепленных на ступице. Во время вращения гребного винта вокруг своей оси на лопастях возникает сила давления, которая в конечном итоге обусловливает движение судна. Характерной величиной гребного винта является шаг. Его теоретическое значение, т. е. без учета скольжения, зависит от угла атаки лопасти гребного винта. Для достижения хорошего взаимодействия между главным двигателем и гребным винтом необходимо, чтобы параметры и особенно шаг винта имели определенные значения. Оптимальное взаимодействие будет достигнуто лишь при определенном состоянии нагрузки судна и при определенных погодных условиях (ветер, волнение и т. д.). Если эти значения отклоняются от заданных, то взаимодействие двигателя и гребного винта не приносит результата, заложенного в проекте. На практике это означает, что взаимодействие двигателя и относящегося к нему гребного винта будет наиболее эффективным, например, при полной нагрузке судна и при хорошей погоде. На судах, работающих в изменяющихся условиях, таких как буксиры или рыболовные суда (свободный ход, ход с тралом), движитель должен быть приспособлен к соответствующим условиям работы. Вместе с тем стало бы возможным одновременное использование полной мощности приводного двигателя при различных состояниях его нагрузки.


Судовой движитель

а - гребной винт с неподвижными лопастями; b - винт регулируемого шага; с - гребной винт в насадке; d - соосные гребные винты

Лопасти винта фиксированного шага отлиты вместе со ступицей или прочно привинчены к ней (см. рис. а). Изменять шаг можно на гребных винтах регулируемого шага ВРШ (рис. b). Лопасти гребного винта расположены на криволинейных дисках и укреплены на ступице винта так, что они могут поворачиваться. Применение ВРШ позволяет использовать нереверсивные двигатели в качестве судовых. Они могут работать и при постоянной частоте вращения, так как в этом случае можно осуществлять все маневры путем изменения угла атаки, т. е. от самого большого шага винта на переднем ходу, когда лопасти находятся в таком положении, что несмотря на вращение гребного винта, тяга не появляется (и поэтому судно не движется), до положения лопастей, соответствующего заднему ходу. Вначале ВРШ применяли только на буксирах, рыболовных и специальных судах, и только позднее их начали устанавливать на судах торгового флота. За счет установки ВРШ достигаются большая экономичность энергетических установок, возможность использования полной мощности двигателя при различной нагрузке, а также возможность применения нереверсивных ДВС или паровых турбин без турбин заднего хода. К преимуществам следует также отнести и возможность осуществления заднего хода при полной мощности двигателя.

Иногда на судах (особенно на судах речного флота) гребной винт устанавливают в насадке (см. рис. с). Такая конструкция позволяет улучшить уелввия работы гребного винта и повысить КПД. Диаметр судового движителя может достигать 9 м, а масса - 50 т. Гребные винты регулируемого шага имеют меньший диаметр. Преобладающее число судов имеет только один гребной винт, устанавливаемый в диаметральной плоскости судна. Встречаются также двухвинтовые суда, которые приводятся в движение либо от двух малооборотных, либо от четырех среднеоборотных дизелей, причем в последнем случае один гребной винт приводится в движение двумя двигателями. В редких случаях строятся трехвинтовые суда, например торпедные катера, на которых два бортовых движителя, приводятся в движение от высокооборотных дизелей через редукторную передачу, а средний гребной винт - от газовой турбины. Некоторые большие пассажирские суда и боевые корабли, например авианосцы, снабжаются четырьмя симметрично расположенными гребными винтами. В условиях постоянно растущих мощностей главных двигателей требуются гребные винты очень больших диаметров, что приводит к технологическим и производственным трудностям. Чтобы противодействовать этому и улучшить КПД, пытаются «устанавливать движители, вращающиеся в противоположных направлениях (см. рис. d). В этом случае необходимы сложные устройства, такие как полые гребные валы и специальные редукторные передачи. Наряду с гребными винтами в последнее время применяют крыльчатые движители. Они состоят из нескольких вращающихся навесных лопаткообразных лопастей изменяющегося профиля, укрепленных на плоском рабочем колесе. Рабочее колесо приводится в движение главным двигателем через гипоидный зубчатый редуктор. Вращающиеся лопаткообразные лопасти создают силу упора, действующую в направлении, зависящем от угла установки лопастей, как показано на рис. а. Во время работы движителя можно плавно изменять угол атаки лопастей.



Крыльчатый движитель

а - принцип действия; b - движитель Фойта-Шнейдера (вид сбоку); с - движитель Фойта Шнейдера (вид сверху); d - буксир с движителем Фойта-Шнейдера в носовой части судна; е - буксир с движителем Фойта-Шнейдера в кормовой части судна

I - «Стоп»; 2 - «Передний ход»; 3 - «Задний ход»; 4 - «Поворот на левый борт»; 5 - «Поворот на левый борт» (на заднем ходу); 6 - «Поворот на правый борт»; 7 - управляющий механизм; 8 - привод; 9 - лопасти; 10 - распределительные рычаги и тяги

Крыльчатый движитель может служить как в качестве пропульсивного движителя, так и в качестве руля. Судно, оснащенное двумя симметрично расположенными движителями, может двигаться в любом направлении. Недостатком является частая повреждаемость лопаткообразных лопастей, выступающих ниже днища судна. Крыльчатый движитель в основном используется на портовых буксирах и лоцманских судах, а также на судах портовой службы. Мощность подобных установок невелика: максимально она составляет 2200 кВт.

Выбор геометрических характеристик, числа винтов и направления их вращения. Для морских транспортных судов обычно КПД винта увеличивается с ростом его диаметра. Это объясняется снижением коэффициента нагрузки при фиксированных значениях упора и скорости движения. Поэтому диаметр винта выбирают максимально возможным из условия его размещения в кормовой оконечности судна. В первом приближении для винта в ДП судна можно принимать D = (0,680,75)Т, для бортового, при двухвальной установке, D = (0,62 0,70) Т, где Т -- осадка судна.

При выборе числа лопастей гребного винта руководствуются соображениями, чтобы лопастная и удвоенная лопастная частоты не совпадали с собственными частотами первых трех тонов колебаний корпуса и основных его конструкций. В этом, случае удается избежать интенсивной вибрации корпуса, вызываемой работой гребного винта. Если информация об указанных частотах отсутствует, для винтов в ДП принимают Z p 4, а для бортовых в зависимости от нагрузки: при K dt >2 (или K nt >1), что соответствует слабонагруженным винтам, берут Z p = 3, для меньших значений этих коэффициентов

Zp = 4. Необоснованное увеличение Zp нерационально по двум причинам: возрастает трудоемкость изготовления винта и несколько снижается его КПД. Последнее обстоятельство имеет место в связи с тем, что для обеспечения равного запаса на кавитацию увеличение числа лопастей влечет за собой и увеличение дискового отношения.

Относительная толщина лопасти в самом широком месте (г = 0,6 - 0,7) не должна превышать предельного значения б mах, до которого КПД еще имеет приемлемое значение. При соблюдении этого условия минимальное дисковое отношение обеспечивающее прочность винт

где d H , D -- диаметр ступицы и винта соответственно, м; бmах =0,080,09; m-коэффициент, учитывающий условия работы винта (m=-1,15 для транспортных судов; m=1,5 для буксиров, m = 1,75 для судов ледового плавания, m = 2,0 для ледоколов); Т -- упор винта, кН; [у] --допускаемые напряжения, для винтов транспортных судов можно принимать [у] =6·10 4 кПа.

Увеличение дискового отношения приводит к падению КПД. Поэтому его выбирают так, чтобы выполнить требования обеспечения прочности (20.1) и отсутствия вредных последствий кавитации (19.24). Как правило, у гребных винтов транспортных судов определяющим является последнее.

Пропульсивный коэффициент винта в ДП обычно больше, чем при бортовом расположении. В связи с этим одновальной установке следует отдать предпочтение перед многовальной. В пользу последней, однако, говорит повышенные живучесть и маневренность, возможность осуществления парциальных режимов.

При выборе количества винтов определяющими могут стать и следующие обстоятельства: наличие подходящих двигателей, возможность их рационального размещения в корпусе, первоначальная стоимость установки и ее эксплуатации.

Что касается морских транспортных судов, то тут превалируют соображения экономического характера, поэтому большинство из них -- одновальные. Исключение составляют крупные быстроходные суда: пассажирские и грузовые лайнеры и др. Необходимая мощность может оказаться слишком велика, чтобы ее можно было получить в одном агрегате либо эффективно переработать одним винтом.

Направление вращения гребного винта не сказывается на его эффективности. Для одновинтовых судов оно определяется устанавливаемым двигателем. Бортовые винты должны вращаться в противоположные стороны во избежание уваливания судна с прямого курса. При этом считается, что во избежание попадания плавающих предметов между корпусом и винтами вращение последних должно быть наружным, т. е. лопасти в верхнем положении должны двигаться от корпуса.

Подбор гребных винтов по диаграммам. Проектирование гребных винтов транспортных судов, как правило, сводится к выбору оптимального винта. При этом он должен обладать необходимой прочностью и удовлетворять условию отсутствия негативных последствий кавитации. В случае, когда требуется обеспечить судну заданную скорость, оптимальность винта означает минимальную мощность механической установки. Если заданы характеристики двигателя, оптимальный винт позволяет судну двигаться с наибольшей скоростью.

Все задачи, связанные с проектированием гребного винта, в том числе и оптимального, эффективно могут решаться с помощью диаграмм для расчета гребных винтов. Исходной информацией при этом являются известные геометрические элементы гребного винта: D max , Z p , A e /A q и характеристики взаимодействия W T , t, i Q . Практически все многообразие заданий на проектирование гребных винтов можно свести к четырем основным типам, для каждого из которых используется своя расчетная схема.

Схема I. Заданы: скорость судна и; расчетное сопротивление R, диаметр винта D. Оптимальный гребной винт находится с помощью коэффициента задания K dt (см. (18.8)), вычисляемого с учетом того, что винт работает за корпусом судна:

На диаграмме, соответствующей элементам задания А е /А 0 , Z p на линии K bt opt находят точку, отвечающую рассчитанному значению (20.2) этого коэффициента, снимают величины P/D, J, Кт, з 0 . Искомые значения оптимальной частоты вращения двигателя и его мощности P S находятся по очевидным формулам:

где з D =з н з 0 -- пропульсивный коэффициент; з s - КПД передачи мощности.

Потери энергии в валопроводе зависят от его длины (МО в середине, в корме, промежуточное положение) и составляют (1-3) %. Соответственно при прямой передаче мощности: двигатель--вал--движитель з s - 0,99 - 0,97. Наличие дополнительного звена -- механического редуктора либо гидромуфты -- увеличивает потери мощности, при этом з s= 0,940,96. Еще меньшие значения КПД имеют место при электрической (дизель-генератор--электродвигатель--вал--винт) передаче мощности: з s = 0,880,90.

Использование коэффициента K dt фактически означает задание коэффициента нагрузки, а вместе с ним и предела коэффициента полезного действия з 0 , что ограничивает возможности оптимизации винта. Поэтому часто ту же задачу решают с помощью коэффициента задания K nt .

Схема 2. Исходные величины те же, что и в схеме 1. Задавая ряд значений частоты вращения винта п, для каждой из них с учетом взаимодействия винта и корпуса определяют

находят на линии K nt opt диаграммы соответствующую точку, снимают относительную поступь J, а затем ее корректируют:

Указанная корректировка необходима для учета влияния корпуса: в связи с тем, что t(J) максимумы функций з 0 (J) и з D (J) не совпадают, т. е. диаметр оптимального винта в свободной воде и за корпусом не одинаковы. Корректировка поступи фактически означает корректировку оптимального диаметра.

Для гребных винтов в ДП б =1,05, для бортовых винтов, где влияние корпуса слабее, б=1,03. Последовательность дальнейших расчетов: J" Dopt Кт P/D з 0 P s ; их удобнее выполнять в табличной форме.

По результатам расчетов строят графические зависимости Ps(n) и Dopt(n), а затем выбирают гребной винт, обеспечивающий P s min. Очевидно, что практический интерес представляют только те варианты, при которых Dopt < Dmax. Для винтов транспортных судов обычно искомый вариант P S min соответствует максимальной величине диаметра.

Пример реализации указанной схемы расчета оптимального гребного винта -- см. в таблицу 22.2. Схема 3. Заданы R, v, D и n. Находят значения К т и J (с учетом взаимодействия), которые однозначно определяют координаты точки, соответствующей искомому винту. С диаграммы снимаются величины P/D, з 0 затем рассчитывают мощность механической установки P s .

Рассматриваемая схема исключает любые вариации, полученный гребной винт не является оптимальным.

В приведенных выше схемах заданы характеристики корпуса -- скорость и сопротивление, а искомой является мощность двигателя. Для решения таких задач и предназначены корпусные диаграммы.

В том случае, когда задаются характеристики двигателя, логичнее было бы использовать машинные диаграммы. Однако и эти задачи могут столь же эффективно решаться с помощью корпусных диаграмм.

Схема 4. Исходные данные: зависимость сопротивления судна от скорости R(v) и характеристики главной механической установки Ps, n.

В районе предполагаемой скорости задаются несколькими ее значениями и для каждого из них рассчитывают коэффициент задания Кот. Дальнейший расчет идентичен таковому в схеме 2. Построив по его данным зависимости Ps (v), D(v) и P/D = f(v), находят искомые характеристики винта в точке, где мощность равна заданной P s (v) =Р s зад. В этом варианте предполагается, что диаметр винта не ограничен. В наиболее интересном с практической точки зрения случае диаметр винта всегда имеет верхний предел D max . Тогда для скоростей, при которых Dopt Dmax, расчет ведется по схеме 2, а при Dopt > Dmax -- по схеме 3. В последнем случае принимают D = D max и выбранный винт, строго говоря, уже не будет оптимальным.

Пример такого расчета -- см. в таблице 22.3, в первых четырех столбцах которой Dopt < Dmax и принимается D = Dopt, а в пятом Dopt > Dmax, в связи с чем принято D=Dmax. В последнем случае КПД винта мало отличается от з 0max , поскольку невелики и различия в Dopt и Dmax. Однако, если ограничение диаметра винта при заданных характеристиках двигателя (P s , n) приводит к существенному снижению пропульсивного коэффициента, то решается вопрос о редукции частоты вращения. Такая ситуация возможна, когда по каким-либо причинам не удается подобрать подходящий двигатель. В этом случае расчет винта можно вести по схеме I для нескольких скоростей движения.

Обычно проектирование гребного винта выполняется в несколько этапов. На первом определяются основные геометрические параметры (D, A E /A 0 , Z p) и коэффициенты взаимодействия винтаи корпуса (Wt, t, i q). Далее рассчитывают гребной винт, обеспечивающий заданному судну заданную скорость (схемы 1 или 2) и находят необходимые для этого характеристики (P s , n) главной механической установки. Затем выбирают двигатель, мощность и частота вращения которого в наибольшей степени отвечают требуемым. На заключительном этапе рассчитывают гребной винт, обеспечивающий проектируемому судну с выбранным двигателем максимальную достижимую скорость.

Для подбора двигателя можно пользоваться каталогами отечественных и зарубежных фирм, а также таблица 20.1, где приведены основные характеристики некоторых судовых малооборотных дизелей, выпускаемых консорциумом «МАН-Бурмейстер и Вайн». ДВС этой фирмы широко применяют на отечественных судах.

Расчет гребного винта с использованием вихревой теории. Проектирование гребных винтов с помощью диаграмм имеет и недостатки: выбирается оптимальный винт в пределах рассматриваемой серии, не учитывается неравномерность поля скоростей за корпусом судна. В связи с первым обстоятельством не гарантировано получение максимально возможного КПД, второе может привести к повышенной виброактивности гребного винта и его неудовлетворительным кави-тационным качествам. Последнее особенно важно для винтов быстроходных судов. Указанных недостатков можно избежать, используя вихревую теорию гребного винта. В ее основе -- вихревая теория крыла, в которой воздействие крыла на окружающую жидкость заменяется воздействием эквивалентного вихря. Из курса гидромеханики известно, что крыло бесконечного размаха с неизменной хордой может быть заменено присоединенным вихрем, имеющим такую же циркуляцию. Крыло конечного размаха заменяется П-образным вихрем постоянной циркуляции, состоящим, из присоединенного (в пределах крыла) вихря и двух свободных, распространяющихся в бесконечность по направлению скорости набегающего потока. Если хорда не постоянна по размаху крыла, оно заменяется присоединенным вихрем переменной циркуляции, а сбегающие с каждой его точки свободные вихри образуют вихревую пелену. И, наконец, крыло можно заменить системой присоединенных вихрей переменной циркуляции. Последняя схема в наибольшей степени подходит для широких крыльев сложной формы.

Указанные операции преследуют одну цель -- с помощью теоремы Био-Савара определить вызванные свободными вихрями скорости в любой точке потока. Эти скорости направлены по нормали к скорости набегающего потока. Они приводят к уменьшению угла атаки -- скосу потока, что влечет за собой снижение подъемной силы крыла и увеличение его сопротивления. Таким образом, задача определения сил, действующих на крыло конечного размаха, практически сводится к нахождению вызванных свободными вихрями скоростей. Лопасти те же крылья малого удлинения, следовательно, вихревая теория может с успехом применяться и для расчета гребного винта. Впервые эта идея была высказана в начале нашего века Н. Е. Жуковским, который считается родоначальником вихревой теории гребного винта. С ее помощью решаются обе задачи: прямая -- поверочный и обратная -- проектировочный расчет гребного винта. В обоих случаях учитываются индивидуальные особенности поля скоростей за корпусом судна.

Таблица 20.1 Характеристики некоторых судовых малооборотных дизелей (МОД)

Марка дизеля

Частота вращения n, об/мин

Агрегатная мощность Р тыс. кВт, при числе цилиндров

Примечания: 1. Двигатели типа ДКРН -- двухтактные крейцкопфные, с газотурбонаддувом, цифры за буквенным обозначением означают диаметр цилиндра и ход поршня, см.

  • 2. В таблице приведены номинальные значения мощности Р зи и частоты вращения п н.
  • 3. Пример записи характеристик 12-цилиндрового двигателя: 12 ДКРН 90/292, P SH =34 900 кВт, п н =58 об/мин.

Условие оптимальности винта при его проектировочном расчете-- достижение наивысшего пропульсивного коэффициента при выполнении требований задания и отсутствии вредных последствий кавитации. Другими словами, проектируется гребной винт, приспособленный к заданному попутному потоку. В результате такого расчета получают геометрические характеристики гребного винта -- распределение относительной кривизны профиля лопасти и шагового отношения по радиусу: и

Результатом поверочного расчета является распределение нагрузки по радиусу винта заданной геометрии в функции от его режима работы, относительной поступи:

В свою очередь эти зависимости позволяют найти силы, действующие на отдельные лопасти:

и на винт в целом:

Выражение (20.6) учитывает, что в общем случае при работе в неравномерном поле скоростей упоры и моменты, создаваемые отдельными лопастями, не одинаковы.

Рассчитав упор и момент для различных фиксированных значений относительной поступи винта, можно получить его ГДХ в свободной воде.

Поверочный расчет гребного винта широко используется при анализе его прочности, проверке на кавитацию, при изучении периодических усилий, возникающих на лопастях в неравномерном поле скоростей.

Ледовые гребные винты и их особенности. К гребным винтам ледоколов и судов активного ледового плавания предъявляются следующие специфические требования: высокая прочность, обеспечивающая работу в ледовых условиях, достаточная эффективность при движении передним и задним ходом с малыми скоростями, т. е. на режимах, близких к швартовному. Желательно, чтобы винты имели съемные лопасти, замена которых в случае поломки могла осуществляться судовыми средствами. В отечественной практике широкое применение находят ледовые гребные винты, разработанные М. А. Игнатьевым. Эти винты имеют четыре лопасти -- поломка одной изкрупные льдины. Контур спрямленной поверхности имеет симметричную форму, профиль сечения лопасти двояковыпуклый, обеспечивающий прочность и достаточную эффективность на заднем ходу. Увеличенный диаметр ступицы dн = 0,28 позволяет устанавливать съемные лопасти. На основании испытания серии моделей М. А. Игнатьевым были созданы расчетные диаграммы для проектирования гребных винтов ледоколов (Z p = 4; А е /А 0 =0,5; P/D = 0,41,2), которые можно найти в специальной литературе.

При проектировании гребных винтов ледоколов их элементы выбирают таким образом, чтобы в расчетном режиме можно было обеспечить максимальный упор на единицу мощности главной механической установки. В качестве расчетного обычно принимают режим движения в тяжелых либо предельных льдах с малой скоростью.

При заданных мощности двигателя и диаметре гребного винта максимальный удельный упор достигается при условии

Тогда выбор ледового винта сводится к построению по данным диаграммы зависимости q = f(P/D) при расчетном значении относительной поступи. Максимум этой функции будет соответствовать оптимальному с указанных позиций шаговому отношению. Для ледовых винтов расчетная поступь лежит в пределах J = 00,2, оптимальное шаговое отношение при этом составляет P/D = 0,700,80.

Диаметр винта ледокола выбирают максимально возможным, при этом максимален должен быть и удельный упор. Однако практика позволила выработать рекомендации: чтобы уменьшить вероятность взаимодействия гребного винта с плавающими на поверхности воды крупными льдинами, его ось должна быть достаточно заглублена, что возможно при условии, когда диаметр не превышает (55--60) % осадки.

Большая подводимая к ледовому винту мощность, повышенная толщина лопасти, малые значения относительной поступи на рабочих режимах -- все это способствует возникновению кавитации. Основной способ ее отделения -- увеличение дискового отношения.

При работе во льдах существенно изменяются ГДХ гребного винта: упор падает, момент возрастает, заметно снижается КПД. Достоверная оценка этих изменений -- одна из проблем, возникающих при расчете ледовых гребных винтов. Проектирование осложняет и то обстоятельство, что практически не существует систематических данных о взаимодействии гребного винта и корпуса в водно-ледяном потоке.

Гребные винты для судов активного ледового плавания занимают промежуточное положение между винтами транспортных судов и ледоколов.

Сегодня на ледоколах в основном используются винты фиксированного шага (ВФШ). Лучшим приводом в этом случае является гребной электродвигатель, обеспечивающий значительное повышение момента на валу при взаимодействии винта со льдом и тем самым снижающий вероятность заклинки винта. Кроме того, электродвигатель уменьшает время реверса, повышает маневренность судна. Поэтому, даже несмотря на довольно высокие потери мощности в передаче, электродвижение находит широкое распространение на ледоколах и судах активного ледового плавания.

В последнее время наблюдается тенденция использования на этих судах ВРШ, в том числе и в насадках. Применение таких винтов в сочетании с двигателем внутреннего сгорания или турбиной снизит потери энергии в передаче. Насадка обеспечивает повышение упора на швартовах, управление лопастями-- достаточную маневренность. Однако подобная пропульсивная установка имеет и ряд существенных недостатков: обломки льда, попадая в насадку, приводят к резкому усилению вибрации кормовой оконечности; начальная стоимость, эксплуатация и ремонт в случае поломки ВРШ существенно выше, чем у ВФШ,

Прочность гребных винтов. Лопасть представляет собой винтообразной формы оболочку, имеющую переменную вдоль радиуса ширину, толщину и кривизну. Ее можно рассматривать как консольную балку, жестко заделанную в корневом сечении. Под действием внешних нагрузок: упора, сопротивления вращению, центробежных сил -- лопасть подвергается кручению, изгибу, растяжению, т. е. испытывает сложное напряженное состояние. них представляет не слишком большую опасность, а в межлопастное пространство не могут попасть

Расчет прочности лопасти, как обычно, включает три задачи: определение внешних сил и внутренних напряжений, назначение обоснованного запаса прочности.

Внешние силы обычно разделяют на две категории: стационарные и периодические, возникающие в основном вследствие неравномерности поля скоростей.

На сегодняшний день проблему определения внешних сил можно считать практически решенной. Для гребного винта заданной геометрии, работающего в заданном поле скоростей, поверочный расчет позволяет определить как средние, так и амплитудные значениях всех перечисленных выше видов нагрузок, действующих на лопасть.

Несколько сложнее обстоит дело с определением сил внутренних, однако для винтов с не слишком большим дисковым отношением существуют достаточно надежные способы расчета этих напряжений.

Расчеты, выполненные для гребных винтов транспортных судов, показыва...

В заключение отметим, что точное определение напряжений в лопастях в различных условиях эксплуатации (реверс, движение на волнении и др.) пока еще не всегда возможно. Это компенсируется значительными запасами прочности, вводимыми при назначении допускаемых напряжений.

На предварительных стадиях расчета винта для оценки его прочности можно использовать выражение (20.1).

Содержание статьи

СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ, устройства для обеспечения движения кораблей, катеров и других судов. К движителям относятся гребной винт и гребное колесо. В качестве судовых энергетических установок используются, как правило, паровые машины и турбины, газовые турбины и двигатели внутреннего сгорания, в основном дизельные. На крупных и мощных специализированных судах типа ледоколов и подводных лодок часто применяются атомные энергетические установки.

По-видимому, первым предложил использовать энергию пара для движения судов Леонардо да Винчи (1452–1519). В 1705 Т.Ньюкомен (Англия) запатентовал первую довольно эффективную паровую машину, но его попытки использовать возвратно-поступательное движение поршня для вращения гребного колеса оказались неудачными.

ТИПЫ СУДОВЫХ УСТАНОВОК

Пар – традиционный источник энергии для движения судов. Пар получают при сжигании топлива в водотрубных котлах. Чаще других применяются двухбарабанные водотрубные котлы. В этих котлах имеются топки с водоохлаждаемыми стенками, пароперегреватели, экономайзеры, а иногда и воздухоподогреватели. Их КПД достигает 88%.

Дизели впервые появились в качестве судовых двигателей в 1903. Расход топлива в судовых дизелях составляет 0,25–0,3 кг/кВтЧ ч, а паровые машины расходуют 0,3–0,5 кг/кВтЧ ч в зависимости от конструкции двигателя, привода и других конструктивных особенностей. Дизели, особенно в сочетании с электроприводом, очень удобны для применения на паромах и буксирах, поскольку обеспечивают высокую маневренность.

Поршневые паровые машины.

Времена поршневых машин, когда-то служивших самым разнообразным целям, прошли. По КПД они существенно уступают как паровым турбинам, так и дизелям. На тех судах, где еще стоят паровые машины, – это компаунд-машины: пар расширяется последовательно в трех или даже четырех цилиндрах. Поршни всех цилиндров работают на один вал.

Паровые турбины.

Судовые паровые турбины обычно состоят из двух каскадов: высокого и низкого давления, каждый из которых через понижающий редуктор вращает вал гребного винта. На военно-морских судах часто дополнительно ставят небольшие турбины для крейсерского режима, которые используют для повышения экономичности, а при максимальных скоростях включаются мощные турбины. Каскад высокого давления вращается со скоростью 5000 об/мин.

На современных паровых судах питательная вода из конденсаторов в подогреватели подается через несколько ступеней нагрева. Нагрев производится за счет тепла рабочего тела турбины и отходящих топочных газов, обтекающих экономайзер.

Почти все вспомогательное оборудование имеет электрический привод. Электрогенераторы с приводом от паровых турбин обычно вырабатывают постоянный ток напряжением 250 В. Используется и переменный ток.

Если передача мощности от турбины на винт осуществляется через редуктор, то для обеспечения заднего хода (обратное вращение винта) применяется дополнительная небольшая турбина. Мощность на валу при обратном вращении составляет 20–40% основной мощности.

Электропривод от турбины к гребному винту был очень популярен в 1930-е годы. В этом случае турбина вращает высокооборотный генератор, а выработанная электроэнергия передается на малооборотные электродвигатели, которые вращают гребной вал. КПД зубчатой передачи (редуктора) примерно 97,5%, электропривода – около 90%. В случае электропривода обратное вращение обеспечивается просто переключением полярности.

Газовые турбины.

Газовые турбины появились на судах значительно позже, чем в авиации, поскольку выигрыш в весе в судостроении не так важен, и этот выигрыш не перевешивал высокую стоимость и сложность монтажа и эксплуатации первых газовых турбин.

Газовые турбины используют на судах не только как главные двигатели; они нашли применение в качестве приводов для пожарных насосов и вспомогательных электрогенераторов, где выгодны их небольшой вес, компактность и быстрый запуск. В военно-морском флоте газовые турбины широко применяются на небольших скоростных судах: десантных катерах, минных тральщиках, судах на подводных крыльях; на больших кораблях их используют для получения максимальной мощности.

Современные газовые турбины обладают приемлемым уровнем надежности, стоимости эксплуатации и производства. Учитывая их малый вес, компактность и быстрый запуск, они во многих случаях становятся конкурентоспособными с дизелями и паровыми турбинами.

Дизельные двигатели.

Впервые дизель как судовой двигатель был установлен на «Вандале» в Санкт-Петербурге (1903). Это произошло всего через 6 лет после изобретения Дизелем своего двигателя. На «Вандале», ходившем по Волге, было два гребных винта; каждый винт устанавливался на одном валу с 75-кВт электродвигателем. Электроэнергия вырабатывалась двумя дизель-генераторами. Трехцилиндровые дизели мощностью по 90 кВт имели постоянную частоту вращения (240 об/мин). Мощность от них нельзя было передавать непосредственно на гребной вал, поскольку не было реверса.

Пробная эксплуатация «Вандала» опровергла общее мнение, что дизели нельзя применять на судах из-за опасности вибраций и высоких давлений. Более того, расход топлива составил только 20% от расхода топлива на пароходах того же водоизмещения.

Внедрение дизелей.

За десять лет, прошедших после установки первого дизеля на речное судно, эти двигатели подверглись значительному усовершенствованию. Увеличилась их мощность за счет повышения числа оборотов, увеличения диаметра цилиндра, удлинения хода поршня, а также разработки двухтактных двигателей.

Число оборотов существующих дизелей составляет от 100 до 2000 об/мин; высокооборотные дизели применяются на небольших быстроходных катерах и во вспомогательных дизель-генераторных системах. Их мощность варьируется в столь же широком диапазоне (10–20 000 кВт). В последние годы появились дизели с наддувом, что увеличивает их мощность примерно на 20%.

Сравнение дизельных двигателей с паровыми.

Дизели имеют преимущество над паровыми двигателями на небольших судах благодаря своей компактности; кроме того, они легче при одинаковой мощности. Дизели расходуют меньше топлива на единицу мощности; правда, дизельное топливо дороже топочного. Расход дизельного топлива можно уменьшить дожиганием отработанных газов. На выбор энергетической установки влияет и тип судна. Дизельные двигатели запускаются гораздо быстрее: их не надо предварительно разогревать. Это очень важное преимущество для портовых судов и вспомогательных или резервных силовых установок. Однако есть преимущества и у паротурбинных установок, которые надежнее в эксплуатации, способны длительное время работать без регламентного обслуживания, отличаются меньшим уровнем вибраций благодаря отсутствию возвратно-поступательного движения.

Судовые дизели.

Судовые дизели отличаются от прочих дизелей только вспомогательными элементами. Они непосредственно либо через редуктор вращают гребной вал и должны обеспечивать обратное вращение. В четырехтактных двигателях для этого служит дополнительная муфта обратного хода, которая входит в зацепление при необходимости обратного вращения. В двухтактных двигателях с обеспечением обратного вращения проще, поскольку последовательность работы клапанов определяется положением поршня в соответствующем цилиндре. В небольших двигателях обратное вращение получают с помощью муфты сцепления и зубчатой передачи. На некоторых сторожевых кораблях и амфибиях длиной менее 60 м ставят реверсивные гребные винты (см. ниже ). Для того чтобы число оборотов двигателя не превысило безопасный предел, все двигатели оборудованы ограничителями частоты вращения.

Электрическая тяга.

Термином «суда с электрической тягой» называют суда, у которых одним из элементов системы преобразования энергии топлива в механическую энергию вращения гребного вала является электрическая машина. Один или несколько электродвигателей соединяются с валом винта напрямую или через редуктор. Питание электродвигателей осуществляется от электрогенераторов, приводом которых служит паровая или газовая турбина либо дизель. На подводных лодках в подводном положении питание электродвигателей осуществляется от аккумуляторов, а в надводном – от дизель-генераторов. Электрические машины постоянного тока обычно устанавливаются на небольших и на высокоманевренных судах. Машины переменного тока используются на океанских лайнерах.

Турбоэлектроходы.

На рис. 1 представлена схема турбоэлектропривода с котельной установкой для получения пара. Пар вращает турбину, которая, в свою очередь, вращает электрогенератор. Выработанная электроэнергия подается на электродвигатели, которые связаны с гребным валом. Обычно каждый турбогенератор работает на один электродвигатель, который вращает свой винт. Однако такая схема позволяет легко подсоединить к одному турбогенератору несколько электродвигателей, а следовательно, несколько гребных винтов.

Судовые турбогенераторы переменного тока могут вырабатывать ток с частотой в пределах 25–100% максимальной, но не более 100 Гц. Генераторы переменного тока вырабатывают ток напряжением до 6000 В, постоянного – до ~900 В.

Дизельэлектроходы.

Дизельэлектрический привод по существу не отличается от турбоэлектрического, за исключением того, что котельная установка и паровая турбина заменены дизельным двигателем.

На небольших судах обычно на каждый винт работают один дизель-генератор и один электродвигатель, однако при необходимости можно отключить один дизель-генератор для экономии или включить дополнительный для увеличения мощности и скорости.

КПД . Электродвигатели постоянного тока на низких оборотах создают больший крутящий момент, чем турбины и дизели с механической передачей. Кроме того, у двигателей и постоянного и переменного тока крутящий момент одинаков как при прямом, так и при обратном вращении.

Полный КПД турбоэлектропривода (отношение мощности на гребном валу к энергии топлива, выделяющейся в единицу времени) ниже, чем КПД турбинного привода, хотя турбина и соединена с гребным валом через два понижающих редуктора. Турбоэлектропривод тяжелее и дороже механического турбинного привода. Полный КПД дизельэлектропривода примерно такой же, как у механического турбинного привода. Каждый тип привода имеет свои достоинства и недостатки. Поэтому выбор типа двигательной установки определяется типом судна и условиями его эксплуатации.

Электроиндукционная муфта.

В этом случае передача мощности от двигателя к гребному винту производится электромагнитным полем. Принципиально такой привод подобен обычному асинхронному электродвигателю, за исключением того, что и статор и якорь электродвигателя в электромагнитном приводе сделаны вращающимися; один из них связан с валом двигателя, а другой – с гребным валом. Элемент, связанный с двигателем, представляет собой обмотку возбуждения, которая питается от внешнего источника постоянного тока и создает электромагнитное поле. Элемент, связанный с гребным валом, представляет собой короткозамкнутую обмотку без внешнего питания. Оба элемента разделены воздушным промежутком. Вращающееся магнитное поле возбуждает в обмотке второго элемента ток, что заставляет этот элемент вращаться, но всегда медленнее (со скольжением), чем первый элемент. Возникающий крутящий момент пропорционален разности частот вращения этих элементов. Выключение тока возбуждения в первичной обмотке «разъединяет» эти элементы. Частоту вращения второго элемента можно регулировать, меняя ток возбуждения. При одном дизельном двигателе на судне использование электромагнитного привода позволяет снизить вибрации благодаря отсутствию механической связи двигателя с гребным валом; при нескольких дизельных двигателях такой привод повышает маневренность судна за счет переключения гребных винтов, поскольку направление их вращения легко изменить.

Атомные энергетические установки.

На судах с атомными энергетическими установками главным источником энергии является ядерный реактор. Тепло, выделяющееся в процессе деления ядерного горючего, служит для генерации пара, поступающего затем в паровую турбину. См . АТОМНАЯ ЭНЕРГЕТИКА.

В реакторной установке, как и в обычном паровом котле, имеются насосы, теплообменники и другое вспомогательное оборудование. Особенностью ядерного реактора является его радиоактивное излучение, которое требует специальной защиты обслуживающего персонала.

Безопасность.

Вокруг реактора приходится ставить массивную биологическую защиту. Обычные защитные материалы от радиоактивного излучения – бетон, свинец, вода, пластмассы и сталь.

Существует проблема хранения жидких и газообразных радиоактивных отходов. Жидкие отходы хранятся в специальных емкостях, а газообразные поглощаются активированным древесным углем. Затем отходы переправляются на берег на предприятия по их переработке.

Судовые ядерные реакторы.

Основными элементами ядерного реактора являются стержни с делящимся веществом (ТВЭЛы), управляющие стержни, охладитель (теплоноситель), замедлитель и отражатель. Эти элементы заключены в герметичный корпус и расположены так, чтобы обеспечить управляемую ядерную реакцию и отвод выделяющегося тепла.

Горючим может быть уран-235, плутоний либо их смесь; эти элементы могут быть химически связаны с иными элементами, быть в жидкой или твердой фазе. Для охлаждения реактора используется тяжелая или легкая вода, жидкие металлы, органические соединения или газы. Теплоноситель может быть использован для передачи тепла другому рабочему телу и производства пара, а может использоваться непосредственно для вращения турбины. Замедлитель служит для уменьшения скорости образующихся нейтронов до значения, наиболее эффективного для реакции деления. Отражатель возвращает в активную зону нейтроны. Замедлителем и отражателем обычно служат тяжелая и легкая вода, жидкие металлы, графит и бериллий.

На всех военно-морских судах, на первом атомном ледоколе «Ленин», на первом грузо-пассажирском судне «Саванна» стоят энергетические установки, выполненные по двухконтурной схеме. В первичном контуре такого реактора вода находится под давлением до 13 МПа и поэтому не вскипает при температуре 270° С, обычной для тракта охлаждения реактора. Вода, нагретая в первичном контуре, служит теплоносителем для производства пара во вторичном контуре.

В первичном контуре могут использоваться и жидкие металлы. Такая схема применена на подводной лодке ВМС США «Си Вулф», где теплоносителем является смесь жидкого натрия с жидким калием. Давление в системе такой схемы сравнительно невелико. Это же преимущество можно реализовать, используя в качестве теплоносителя парафинообразные органические вещества – дифенилы и трифенилы. В первом случае недостатком является проблема коррозии, а во втором – образование смолистых отложений.

Существуют одноконтурные схемы, в которых рабочее тело, нагретое в реакторе, циркулирует между ним и главным двигателем. По одноконтурной схеме работают газоохлаждаемые реакторы. Рабочим телом служит газ, например, гелий, который нагревается в реакторе, а затем вращает газовую турбину.

Защита.

Ее главная функция – обеспечить защиту экипажа и оборудования от излучения, испускаемого реактором и другими элементами, имеющими контакт с радиоактивными веществами. Это излучение делится на две категории: нейтроны, выделяющиеся при делении ядер, и гамма-излучение, возникающее в активной зоне и в активированных материалах.

В общем случае на судах имеются две защитные оболочки. Первая расположена непосредственно вокруг корпуса реактора. Вторичная (биологическая) защита охватывает парогенераторное оборудование, систему очистки и емкости для отходов. Первичная защита поглощает большую часть нейтронов и гамма-излучение реактора. Это снижает радиоактивность вспомогательного оборудования реактора.

Первичная защита может представлять собой двухоболочечный герметичный резервуар с пространством между оболочками, заполненным водой, и наружным свинцовым экраном толщиной от 2 до 10 см. Вода поглощает большую часть нейтронов, а гамма-излучение частично поглощается стенками корпуса, водой и свинцом.

Основная функция вторичной защиты – снизить излучение радиоактивного изотопа азота 16 N, который образуется в теплоносителе, прошедшем через реактор. Для вторичной защиты используются емкости с водой, бетон, свинец и полиэтилен.

Экономичность судов с атомными энергетическими установками.

Для боевых кораблей стоимость постройки и эксплуатационные расходы имеют меньшее значение, чем преимущества почти неограниченной дальности плавания, большей энерговооруженности и скорости кораблей, компактности установки и сокращения обслуживающего персонала. Эти достоинства атомных энергетических установок обусловили их широкое применение на подводных лодках. Оправданно и применение энергии атома на ледоколах.

СУДОВЫЕ ДВИЖИТЕЛИ

Существует четыре основных вида судовых движителей: водометные движители, гребные колеса, гребные винты (в том числе с направляющей насадкой) и крыльчатый движитель.

Водометный движитель.

Водометный движитель – это, по существу, просто поршневой или центробежный насос, который засасывает воду через отверстие в носу или днище корабля и выбрасывает через сопла в кормовой его части. Создаваемый упор (сила тяги) определяется разностью количеств движения струи воды на выходе и входе в движитель. Водометный движитель был впервые предложен и запатентован Тугудом и Хейсом в Англии в 1661. Позднее разные варианты такого двигателя предлагали многие, но все конструкции были неудачными из-за низкого КПД. Водометный движитель применяется в некоторых случаях, когда низкий КПД компенсирутся преимуществами в других отношениях, например для плавания по мелководным или засоренным рекам.

Гребное колесо.

Гребное колесо в самом простом случае – это широкое колесо, у которого по периферии установлены лопасти. В более совершенных конструкциях лопасти могут поворачиваться относительно колеса так, чтобы они создавали нужную пропульсивную силу при минимальных потерях. Ось вращения колеса расположена выше уровня воды, и погружена лишь его небольшая часть, поэтому в каждый данный момент времени только несколько лопастей создают упор. КПД гребного колеса, вообще говоря, возрастает с увеличением его диаметра; не редкость значения диаметра 6 м и более. Частота вращения большого колеса получается низкой. Невысокое число оборотов соответствовало возможностям первых паровых машин; однако со временем машины совершенствовались, их скорости возросли, и малые обороты колеса стали серьезным препятствием. В итоге гребные колеса уступили место гребным винтам.

Гребные винты.

Еще древние египтяне использовали винт для подачи воды из Нила. Есть свидетельства, что в средневековом Китае для движения судов использовали винт с ручным приводом. В Европе винт в качестве судового движителя впервые предложил Р.Гук (1680).

Конструкция и характеристики.

Современный гребной винт обычно имеет несколько лопастей примерно эллиптической формы, равномерно расположенных на центральной втулке. Поверхность лопасти, обращенную вперед, в нос судна, называют засасывающей, обращенную назад – нагнетающей. Засасывающая поверхность лопасти выпуклая, нагнетающая – обычно почти плоская. На рис. 2 схематично показана типичная лопасть гребного винта. Осевое перемещение винтовой поверхности за один оборот называют шагом p ; произведение шага на число оборотов в секунду pn – осевая скорость лопасти винта нулевой толщины в недеформируемой среде. Разность (pn - v 0), где v 0 – истинная осевая скорость винта, характеризует меру деформируемости среды, называемую скольжением. Отношение (pn - v 0)/pn – относительное скольжение. Это отношение – один из основных параметров гребного винта.

Важнейшим параметром, определяющим рабочие характеристики гребного винта, является отношение шага винта к его диаметру. Следующие по значимости – количество лопастей, их ширина, толщина и форма, форма профиля и дисковое отношение (отношение суммарной площади лопастей к площади описывающего их круга) и отношение диаметра втулки к диаметру винта. Экспериментально определены диапазоны изменения этих параметров, обеспечивающие хорошие рабочие характеристики: шаговое отношение (отношение шага винта к его диаметру) 0,6–1,5, отношение максимальной ширины лопасти к диаметру винта 0,20–0,50, отношение максимальной толщины лопасти вблизи втулки к диаметру 0,04–0,05, отношение диаметра втулки к диаметру винта 0,18–0,22. Форма лопасти обычно яйцевидная, а форма профиля – плавно обтекаемая, очень похожая на профиль крыла самолета. Размеры современных гребных винтов варьируются от 20 см до 6 м и более. Мощность, развиваемая винтом, может составлять доли киловатта, а может превышать 40 000 кВт; соответственно, частота вращения лежит в диапазоне от 2000 об/мин для малых винтов до 60 для больших. КПД хороших винтов составляет 0,60–0,75 в зависимости от шагового отношения, числа лопастей и других параметров.

Применение.

На судах ставят один, два или четыре гребных винта в зависимости от размеров судна и требуемой мощности. Одиночный винт обеспечивает более высокий КПД, поскольку отсутствует интерференция и часть энергии, затрачиваемой на движение судна, восстанавливается гребным винтом. Это восстановление выше, если гребной винт установлен в середине спутной струи сразу за ахтерштевнем. Некоторое увеличение пропульсивной силы может быть достигнуто с помощью разрезного руля, для чего верхнюю и нижнюю части руля немного отклоняют в противоположные стороны (соответственно вращению винта), с тем чтобы использовать поперечную составляющую скорости струи после винта для создания дополнительной составляющей силы в направлении движения судна. Применение нескольких винтов увеличивает маневренность судна и возможности поворота без использования рулей, когда винты создают упор в разных направлениях. Как правило, реверсирование упора (изменение направления действия пропульсивной силы на обратное) достигается реверсированием вращения гребных двигателей, но существуют и специальные реверсивные винты, которые позволяют реверсировать упор без изменения направления вращения валов; это достигается поворотом лопастей относительно втулки с помощью механизма, расположенного во втулке и приводимого в действие через полый вал. Гребные винты изготавливают из бронзы, отливают из стали или чугуна. Для работы в соленой воде предпочтительнее сплав бронзы, легированной марганцем, поскольку он хорошо поддается шлифованию и успешно противостоит кавитации и воздействию соленой воды. Спроектированы и созданы высокоскоростные суперкавитирующие винты, у которых вся засасывающая поверхность занята зоной кавитации. При малых скоростях такие винты обладают несколько меньшим КПД, однако они значительно эффективнее обычных при высоких скоростях.

Винт с направляющей насадкой.

Винт с насадкой – обычный винт, установленный в коротком сопле, – изобретен немецким инженером Л.Кортом. Насадка жестко соединена с корпусом судна или выполнена с ним как одно целое.

Принцип действия.

Был сделан ряд попыток установить винт в трубе для улучшения его рабочих характеристик. В 1925 Корт обобщил результаты этих исследований и существенно усовершенствовал конструкцию: он превратил трубу в короткое сопло, диаметр которого на входе был больше, а форма соответствовала аэродинамическому профилю. Корт установил, что такая конструкция обеспечивает значительно больший упор при заданной мощности по сравнению с обычными винтами, поскольку струя, ускоряемая винтом, при наличии насадки сужается в меньшей степени (рис. 3). При одинаковых расходах скорость за винтом с насадкой (v 0 + u u ). В связи с этим винты с насадкой чаще ставят на буксирах, траулерах и аналогичных судах, которые буксируют тяжелые грузы с малой скоростью. Для таких судов выигрыш на единицу мощности, создаваемый винтом с насадкой, может достигать 30–40%. На быстроходных судах винт с насадкой не имеет преимуществ, поскольку небольшой выигрыш в КПД теряется из-за увеличения сопротивления на насадке.

Крыльчатые движители.

Такой движитель представляет собой диск, на котором по периферии перпендикулярно плоскости диска размещены 6–8 лопатообразных лопастей. Диск установлен заподлицо с днищем корабля, а в поток опущены только лопасти движителя. Диск с лопастями вращается относительно своей оси, и, кроме того, лопасти совершают вращательное или колебательное движение относительно своей продольной оси. В результате вращательного и колебательного движений лопастей вода ускоряется в требуемом направлении, и создается упор для движения судна. Такой тип движителя имеет преимущество перед гребным винтом и гребным колесом, поскольку может создавать упор в любом желаемом направлении: вперед, назад и даже вбок без изменения направления вращения двигателя. Поэтому для управления судами с крыльчатым движителем не требуется рулей или других механизмов. Хотя крыльчатые движители не могут заменить гребные винты по универсальности применения, в некоторых специальных случаях они весьма эффективны.

Литература:

Акимов Р.Н. и др. Справочник судового механика . М., 1973–1974
Самсонов В.И. и др. Судовые двигатели внутреннего сгорания . М., 1981
Овсянников М.К., Петухов В.А. Судовые дизельные установки (спр.). Л., 1986
Артюшков Л.С. и др. Судовые движители . Л., 1988
Батырев А.Н. и др. Корабельные ядерные установки зарубежных стран . СПб., 1994



Движителем называется преобразователь энергии, предназначенный для создания полезной тяги Т Е. Последняя уравновешивает сопротивление R и обеспечивает судну установившееся движение. При этом в общем случае должно выполняться условие

где Z- количество движителей; Т Еi -- полезная тяга i-го движителя.

Если все движители одинаковы, то (16.1) преобразуется к виду ZТ Е =R; для одновинтового судна это условие записывается Т Е = R.

К собственному сопротивлению судов специального типа (буксиров, траулеров) необходимо добавить сопротивление буксируемого судна или устройства: .

По принципу действия судовые движители принято разделять на два типа: активные и гидрореактивные. Первые для создания полезной тяги используют энергию движущихся масс воздуха, вторые -- преобразуют энергию механической установки в энергию поступательного движения судна. Для создания полезной тяги эти движители используют реакцию отброшенных масс жидкости. Работа гидрореактивных движителей, как и любых преобразователей энергии, сопровождается непроизводительными потерями, в силу чего их коэффициент полезного действия (КПД) всегда меньше единицы.

Активные движители. Особенность всех движителей данного типа заключается в том, что они либо вообще не потребляют энергии от судовых источников, либо затрачивают ее значительно меньше, чем создают для движения судна. Здесь не нарушаются фундаментальные законы, физики -- недостающая энергия отбирается от ветра. Самым древним активным движителем является парус, сыгравший огромную роль в становлении и развитии цивилизации. В конце прошлого века парус был вытеснен гидроактивными движителями, приводимыми в движение механической установкой. Это существенно расширило возможности флота, работа которого теперь не зависела от метеорологических условий.

В последнее время наблюдается возрождение интереса к активным движителям -- диалектическая спираль вышла на новый виток. Основных причин тому две: все большее внимание уделяется энергосберегающим технологиям и проблемам охраны окружающей среды: с точки зрения экологической чистоты активные движители вне конкуренции. Сегодня в мире насчитывается уже несколько десятков морских транспортных судов, оборудованных парусами, используемыми чаще всего в качестве вспомогательных движителей. Среди этих судов -- современные рудовозы японской постройки дедвейтом более 30 тыс. т. Кроме различных типов парусов (мягких, жестких, объемных и т. д.) изучаются возможности роторных и турбинных активных движителей. Первый представляет собой принудительно вращаемый вертикальный цилиндр, создающий в потоке воздуха подъемную силу (эффект Магнуса), проекция которой на направление движения и создает полезную тягу.

Роторный движитель -- один из немногих судовых активных, на работу которого затрачивается энергия, однако она существенно меньше, чем этот движитель отдает на движение судна. Ветротурбина вращается под действием потока воздуха и может служить источником энергии для судового движителя (например, гребного винта).

Гидрореактивные движители. Гребное весло -- самый древний из них, использующий для создания полезной тяги мускульную энергию человека. Сегодня он находит применение лишь на малых прогулочных и спортивных судах. Гребное колесо -- вопреки расхожему мнению имеет также весьма внушительную историю. Суда, оборудованные этим движителем, были известны в Древнем Египте и Древней Греции. В качестве источника энергии на них использовались люди или животные, обычно ходящие по кругу быки. Не выдержав конкуренции с веслами, гребные колеса в античные времена сошли со сцены, чтобы вновь возродиться в XVIII в. в качестве движителя паровых судов. Сегодня гребные колеса находят очень ограниченное применение -- в основном на буксирах, эксплуатируемых в мелководных внутренних водоемах. Основные недостатки гребных колес: громоздкость, высокая удельная масса (15--30 кг/кВт), рыскание судна при качке.

Гребной винт (рисунок 16.1)--движитель, нашедший наибольшее распространение на современных судах всех типов, что объясняется рядом достоинств, присущих ему:

  • 1) высоким КПД, достигающим з 0 = 0,70,75;
  • 2) простотой конструкции и небольшой удельной массой (0,5 - 2 кг/кВт);
  • 3) слабым реагированием на качку судна;
  • 4) возможностью использования в качестве привода двигателей внутреннего сгорания с прямой (т.е. без редуктора) передачей мощности;
  • 5) отсутствием необходимости изменять форму корпуса при установке движителя.

Рисунок 16.1 Гребной винт

Обычно гребные винты размещаются в кормовой оконечности судна, т. е. относятся к категории толкающих. Однако на судах некоторых типов (отдельных ледоколах, СДП) могут использоваться и тянущие винты.

Большинство морских транспортных судов имеют один гребной винт, но на некоторых крупных и относительно быстроходных судах и кораблях число движителей может доходить до четырех. История знает пример, когда на судне «Турбиния» было установлено девять гребных винтов -- по три на каждом из трех гребных валов.

Наряду с гребными винтами фиксированного шага (ВФШ), лопасти которых закреплены, широкое применение в последнее время находят винты регулируемого шага (ВРШ), имеющие поворотные лопасти. ВФШ иногда выполняются со съемными лопастями (на ледоколах, судах активного ледового плавания).

Крыльчатый движитель занимает особое место в ряду гидрореактивных движителей -- он одновременно может служить и органом управления. Этот движитель представляет собой барабан, установленный заподлицо с днищем (рисунок 16.2). По окружности барабана располагаются лопасти -- крылообразные тела, число которых изменяется от четырех до восьми. Барабан вращается вокруг вертикальной оси, лопасти совершают колебательные движения относительно барабана. Таким образом лопасть одновременно участвует в трех движениях -- поступательном, вместе с судном, вращательном, вместе с барабаном, и колебательном относительно него.

Рисунок 16.2 Крыльчатый движитель

В зависимости от закона управления лопастями крыльчатый движитель может создавать упор в любом направлении в плоскости своего диска, т.е. служить и органом управления. Судно, оборудованное двумя крыльчатыми движителями, может перемещаться лагом, разворачиваться на месте. Кроме того, этот движитель позволяет производить реверс судна без реверса механической установки. Повышенные маневренные качества - основное достоинство судов с крыльчатым движителем. Вместе с тем, на всех режимах движения этот движитель может быть приведен в соответствие с двигателем. Тем не менее, крыльчатый движитель не находит широкого применения, так как обладает рядом существенных недостатков:

  • 1) сложностью конструкции и большой (5 -- 20 кг/кВт) удельной массой;
  • 2) ограничением передаваемой на один движитель мощности;
  • 3) сравнительно невысоким КПД;
  • 4) ограничением скорости из-за опасности кавитации.

Водометный движитель имеет водопроточный канал и насос, засасывающий воду через приемное отверстие, ускоряющий ее и выбрасывающий через сопло. Рабочим органом водометного движителя чаще всего является осевой насос -- винт в трубе. Специальное реверсивно-рулевое устройство изменяет направление струи, истекающей из сопла, что обеспечивает судну необходимую маневренность. Водометный движитель может иметь подводный, полуподводный либо атмосферный выброс струи. Первые два типа находят применение на водоизмещающих судах, эксплуатирующихся на мелководных или засоренных (лесосплав) водоемах. Суда эти, как правило, характеризуются умеренными скоростями движения, при которых КПД водометных движителей существенно ниже, чем КПД гребных винтов.

Водометы с атмосферным выбросом (рисунок 16.3) в последнее время используются на быстроходных СДП -- глиссирующих судах, СПК, СВП. Дело в том, что с ростом скорости КПД водометного движителя увеличивается.

Этим свойством обладают все гидрореактивные движители, но до определенного предела, пока отсутствует кавитация. Водометный движитель единственный, у которого кавитация может быть отдалена до скоростей v S = 100 уз и более. Это достигается за счет установки друг за другом нескольких ступеней (насосов), нагрузка между которыми распределяется так, чтобы кавитация отсутствовала. Поэтому водометный движитель, уступающий по эффективности гребному винту при умеренных скоростях, с их ростом до v s = 55 - 60 уз имеет КПД, превышающий таковой у всех других движителей.

Рисунок 16.3 Водометный движитель быстроходного судна

Перечисленные выше гидрореактивные движители относятся к категории лопастных -- в качестве рабочих элементов все они имеют крыловидные тела -- лопасти.

Газоводометный движитель в этом плане является исключением. Рабочим телом в нем служит газ (сжатый воздух либо пар высоких параметров). Поступая в профилированный водопроточный канал, газ расширяется и с повышенной скоростью выбрасывает из сопла воду, создавая полезную тягу. Неоспоримые преимущества газоводометного движителя:

  • 1) простота подвода энергии (исключаются двигатель, редуктор, валопровод);
  • 2) отсутствие вращающихся деталей и соответственно опасности их кавитации;
  • 3) весьма низкие массогабаритные характеристики.

Однако газоводометный движитель в связи с низкой эффективностью пока не находит применения -- его КПД не превышает 30--40 % и имеет тенденцию к падению с ростом скорости. Иногда, в силу перечисленных достоинств, оправдано использование газоводометного движителя в качестве второй: ступени обычного водомета.

Выше перечислены только основные типы движителей. Однако существует большое количество конструкций, не находящих широкого применения в силу несовершенства, сложности, недостаточной разработанности. Среди них можно назвать гусеничный и шнековый движители, «машущее крыло», «рыбий хвост», а также проекты «экзотических» движителей типа воздушных зме-ев и аэростатов, запускаемых в верхние слои атмосферы, и т. д.

Краткие сведения из теории движителей. Теория идеального движителя. Все гидрореактивные движители действуют по одному принципу, поэтому рассмотрим наиболее общие закономерности, характеризующие их работу. Этой цели служит теория идеального движителя, в которой приняты следующие допущения:

  • 1) жидкость идеальная, безграничная, несжимаемая;
  • 2) движитель -- тонкий проницаемый диск;
  • 3) скорость равномерно распределена в поперечном сечении струи и в диске движителя;
  • 4) упор создается за счет подвода к движителю внешней энергии, обеспечивающей скачок давления в его диске; скорость в струе, под действием этого скачка, изменяется непрерывно.

Потери мощности происходят только из-за увеличения кинетической энергии жидкости, протекающей в трубке тока, охватывающей движитель, т. е. на создание так называемых вызванных осевых скоростей. В силу первого допущения отсутствуют вязкостные потери, в силу второго не учитывают конструктивные особенности реального движителя и потери энергии, связанные с ними.

На бесконечности перед движителем (рисунок 16.4, сечение I--I) скорость и давление в струе такие, как и в окружающей жидкости.

Рисунок 16.4 Схема идеального движителя

На бесконечности за движителем (сечение IV--IV) скорость достигла своего наибольшего значения, а давление выравнялось с давлением в окружающей жидкости. На границе струи имеет место разрыв скорости.

Создаваемый идеальным движителем упор

где р 1 ,р 2 -- давления в струе перед и за движителем; площадь гидравлического сечения движителя; S- его диаметр.

Перепад давлений Ар определим, записав уравнение Бернулли для линии тока от сечения I-- I до сечения II--II, расположенного непосредственно перед диском, движителя, а также от сечения III--III, сразу за диском, до сечения IV-- IV далеко на бесконечности за ним (см. рисунок 16.4)

где х А и х s - скорости в струе на бесконечности перед движителем и в его диске соответственно, - вызванная осевая скорость на бесконечности за движителем.

Сопоставляя (16.3) и (16.4), находим скачок давлений в диске движителя

а затем и его упор

В соответствии с законом количества движения этот же упор можно представить в виде

где т - масса жидкости, протекающая через диск движителя в единицу времени. Приравняв (16.6) и (16.7), получим

вызванная осевая скорость в диске движителя.

Вывод (16.9), справедливый для любого гидрореактивного движителя в идеальной жидкости, в дальнейшем будет широко использоваться.

Полезная мощность идеального движителя

затраченная включает и приращение кинетической энергии жидкости в струе:

Тогда КПД

и эффективность идеального движителя снижается с ростом вызванной скорости.

Возможности анализа (16.12) ограничены, поэтому введем в рассмотрение коэффициент нагрузки движителя по упору

Приравняв упор, определяемый из (4.6) и (4.13), получим

Решая квадратное уравнение (4.14) с учетом находим безразмерную осевую вызванную скорость

Подставляя (4.15) в (4.12), определяем КПД идеального движителя

Таким образом, эффективность идеального движителя увеличивается с уменьшением коэффициента его нагрузки. Последнее возможно за счет снижения упора, увеличения скорости движения, плотности жидкости и площади гидравлического сечения движителя [см. (16.13)]. Для наиболее важного с практической точки зрения случая, когда величины Т и v A заданы, КПД движителя однозначно определяется его диаметром и возрастает с его ростом. Вследствие различий в плотности среды КПД движителя, работающего в воде больше, чем в воздухе.

Используя (16.15) и (16.9), можно найти максимальное сужение струи

которое в пределе (при С Тд --> составит ().

Работа реального движителя сопровождается дополнительными потерями энергии, идущими на преодоление сил вязкости, закручивание потока и т. д. Поэтому и КПД реального движителя всегда ниже, чем у идеального:

где к о < 1 коэффициент качества.

На рисунке 16.5 представлены КПД идеального и реального движителя в функции от коэффициента нагрузки. Заштрихованная область характеризует дополнительные потери энергии. Можно выделить две зоны - в первой (0 < С та < С ТA0) характер изменения КПД движителей качественно различен, во второй (С та > С тао) он одинаков, при С та = С тао = 0,30,35 КПД реального движителя имеет максимум. Резкое падение з 0 при С та 0 объясняется не учитываемыми в теории идеального движителя вязкостными потерями. Дело в том, что при заданных Т и v A условие С ТA 0 практически означает D, а следовательно и безграничный рост сил трения. Судовые движители обычно работают с коэффициентами нагрузки, существенно большими, чем С ТA0 0,35, а следовательно на них могут быть распространены выводы теории идеального движителя относительно характера зависимости КПД от С ТA .

Рисунок 16.5 КПД идеального и реального движителей

Выражение (16.18) позволяет сопоставлять эффективность различных типов движителей. Для гребных винтов к 0mах = 0,80 и имеет место при С ТA С ТA0 .

Пример 16.1. Найдем коэффициент качества гребного винта судна «Инженер». Дополнительно известно (см. § 4.12) D = 6,42 м; Т = 1410 кН; v А = 8,5 м/с; з 0 = 0,630.

По (16.13) определяем коэффициент нагрузки:

и по (16.16), рассчитываем КПД идеального движителя

Тогда коэффициент качества (16.18)

Пример 16.2. Определим КПД идеального движителя, работающего в воздухе. Исходные данные те же, что и в примере 16.1.

Принимая рА = 1,23 * 103 т/м3, находим

Пример 16.3. Рассчитаем диаметр воздушного идеального движителя, эквивалентного по КПД, движителю, работающему в воде.

Имеем (см. пример 16.1) , С ТА = 1,05, тогда

Примеры 16.2 и 16.3 наглядно объясняют, почему на кораблях и судах не устанавливают воздушные винты: при приемлемых габаритах их КПД будет на порядок ниже, чем КПД гребных винтов, а для обеспечения эквивалентного КПД диаметр воздушного винта должен быть одного порядка с длиной судна, что неприемлемо.

Исключение составляют СВПА и СЭП, вследствие амфибийности которых установка гидравлических движителей невозможна. Однако и КПД воздушных винтов у этих судов достаточно высок. Причина -- относительно большие габариты винтов и существенно большие скорости движения.

Для справки: лучшие воздушные винты самолетов имеют КПД з 0 =0,80,84, что больше, чем у гребных винтов в этом случае нет необходимости принимать меры для устранения кавитации.

Основы теории крыла. Рабочими элементами большинства судовых движителей служат лопасти, действующие по принципу несущего крыла. При движении крыла в жидкости на нем возникают подъемная сила У и сила профильного сопротивления X. Первая из этих сил нормальна к скорости, вторая направлена вдоль нее. В безграничной жидкости профильное сопротивление имеет чисто вязкостную природу.

Гидродинамические характеристики (ГДХ) крыла представляют в виде безразмерных коэффициентов подъемной силы Су и сопротивления Сх

где S - площадь крыла в плане; v -- скорость движения.

Основные геометрические характеристики крыла (рисунок 16.6): хорда b, максимальная толщина профиля е, стрелка прогиба е с. Последние величины чаще используются в безразмерном виде: b= е/b и д с = е с /b и соответственно называются относительной толщиной и относительной кривизной (стрелкой прогиба).

Рисунок 16.6 Профиль крыла

Рисунок 16.7 Гидродинамические характеристики крыла.

Крыло может иметь авиационный либо сегментный профиль сечения, в первом случае максимальная толщина располагается на расстоянии 1b/3 от входящей кромки, во втором 1=0,5b. Для профиля заданной формы ГДХ зависят только от угла атаки а (рисунок 16.7). В общем случае д с > 0, соответственно и угол нулевой подъемной силы б 0 > 0. Коэффициент подъемной силы увеличивается вплоть до критического угла атаки б =б кр, при котором происходит отрыв потока, наблюдается резкое падение Су и рост коэффициента сопротивления С Х. Эффективность крыла определяется его качеством К = С у /С х которое имеет максимум при небольших положительных углах атаки.

В теории движителей часто используется обратное качество профиля в идеальной жидкости е = 0.

Механические двигатели на судах могут приводить в действие следующие движители

1 У нас в стране суда с таким парусным вооружением называют кэт га-фельный, бермудский и т. д. - прим. науч. ред.

2 Движитель - устройство, которое, используя работу двигателя, создает силу, способную перемещать судно в заданном направлении.

Гребные ВИНТЫ. Винты, размещаемые в кормовой части судна, постоянно находятся под водой. Гребные валы винтов параллельны конструктивной ватерлинии (КВЛ)Винты могут иметь от двух до пяти лопастей, неподвижных или поворотных (регулируемого шага) (рис. 56). Наконец, суда могут быть с одним, двумя, тремя или четырьмя винтами, расположенными симметрично относительно диаметральной плоскости.

Считается, что суда с гребными винтами и обычным корпусом не могут развить скорость более 40 уз, так как коэффициент полезного действия винтов невелик. Только с появлением новых типов судов, например с подводными крыльями или на воздушной подушке, удалось превысить эту скорость.

Гребные колеса - это специальные колеса с лопастями, расположенными по окружности; лопасти - плицы - могут быть неподвижными или поворотными (рис. 57). Гребные колеса, как правило два, устанавливают по бортам судна, однако встречаются суда и с одним гребным винтом, расположенным на корме (например, некоторые американские речные суда). В воде находится только нижняя часть гребных колес.

Крыльчатый движитель начал входить в употребление только в последние годы. Он был предложен в 1926 г. австрийцем Эрнестом Шнайдером и после пятилетних испытаний построен немецкой фирмой Войта. С 1939 г. его начинают применять в основном на буксирах, понтонах и речных судах.

Движитель представляет собой диск, горизонтально вращающийся внутри обшивки, с четырьмя выступающими лопастями, которые могут поворачиваться относительно своих вертикальных осей. Лопасти можно располагать и эксцентрично; изменяя эксцентриситет и углы установки лопастей, создают упор движителя в любом направлении (рис. 58). Поэтому такой движитель заменяет руль и одновременно обеспечивает судну большую маневренность: возможно движение вперед, назад, в сторону и дал<е поворот судна на месте.

Водометный движитель. Ведутся разработки новых движителей. Широкое применение, возможно, найдет водометный движитель, первые попытки использования которого относятся к прош-. лому веку. Эксперименты проводились в 1866 г. в Англии и в 1885 г. в России, но только в 1940 г. в Советском Союзе и в США они закончились успешно.

Принцип работы движителя состоит в том, что вода отбрасывается Б сторону, противоположную желаемому направлению движения судна. Для этого вода засасывается через отверстие в днище при помощи насоса и с большой скоростью через сопло выбрасывается наружу.При использовании этого движителя можно обходиться без руля, так как сопло поворачивается в любую сторону (рис. 59, 60).

" КВЛ - ватерлиния, соответствующая проектной осадке судна.


Рис. 62. Судно на воздушной подушке.

Воздушные винты, к водным транспортным средствам с механическим двигателем относят и глиссеры, приводимые в движение воздушным винтом. Эти суда, как правило, имеют плоское днище, их часто используют на мелководьях, в болотах, озерах, лагунах и т. д. (рис. 61).

По принципу поддержания суда классифицируют на:

водоизмещающие, у которых вес уравновешен силами воды, действующими на погруженную в воду часть судна, т. е. -силами гидростатического давления;

суда с динамическими принципами поддержания (глиссирующие, суда на воздушной подушке и на подводных крыльях, экра-нопланы).

Суда на воздушной подушке. Эти транспортные средства называть судами следует с оговоркой, так как они могут двигаться как по суше, так и по воде, но могут сыграть вполне определенную роль в развитии будущих мор- ских средств.

в Англии такие суда называют Hovercraft - парящими средствами передвижения, а в Америке - Ground Effect Maschine - машинами эффекта поверхности.

При движении такие суда опираются на воздушную подушку, давление которой уравновешивает вес транспортного средства и удерживает его парящим над землей или водой. Таким образом, судну приходится преодолевать только сопротивление воздуха, что позволяет достичь высоких скоростей.

Существуют различные способы создания воздушных подушек, в основе которых лежит один принцип: воздух специальными вентиляторами нагнетается под днище транспортного средства. Обычно применяют один или несколько воздушных винтов или пропускают часть воздушной струи от компрессоров через соответствующие сопла, благодаря чему судно движется. В настоящее время проводятся эксперименты по созданию других транспортных средств, работающих по принципу воздушной подушки (риє. 62).

Суда на подводных крыльях. В настоящее время этим судам предсказывают большое будущее. В них в определенном смысле сконцентрирован опыт и современные достижения техники.

Благодаря опытам Кроко и Форлакини первое такое судно было испытано на озере Комо в 1920 г.

Судно на подводных крыльях во время движения не испытывает гидродинамического давления, так как в воду погружены олько небольшие крылья особого профиля, а весь корпус полностью находится над водой.


Различают суда с наклонными крыльями, часть которых находится в воде, а часть над водой (рис. 63), и суда с постоянно погруженными подводными крыльями (рис. 64).

Движение этих судов происходит при помощи или обычных гребных винтов, или воздушных винтов, или водометного движителя. Высокие скорости судов на подводных крыльях свидетельствуют об их большой перспективности и о правильности выбранного конструкторами пути.