Маломощные волоконные лазеры. Иттербиевый волоконный лазер: устройство, принцип работы, мощность, производство, применение Непрерывные тулиевые лазеры

Волоконный лазер – это лазер с полностью или частично оптоволоконной реализацией, где из оптического волокна выполнены усиливающая среда и, в отдельных случаях, резонатор.


Волоконный лазер – это лазер с полностью или частично оптоволоконной реализацией, где из оптического волокн а выполнены усиливающая среда и, в отдельных случаях, резонатор. В зависимости от степени волоконной реализации лазер может быть цельноволоконным (активная среда и резонатор) или волоконно-дискретным (волоконный только резонатор или другие элементы ).

Волоконные лазеры могут работать в непрерывной, а также в нано- и фемтосекундной импульсной пульсации.

Конструкция лазера зависит от специфики их работы. Резонатором может быть система Фабри-Перо или резонатор кольцевой. В большинстве конструкций в качестве активной среды используется оптоволокно, допированное ионами редкоземельных элементов – тулий, эрбий, неодим, иттербий, празеодимий. Накачка лазера осуществляется с помощью одного или нескольких лазерных диодов непосредственно в сердцевину волокна или, в мощных системах, во внутреннюю оболочку.

Волоконные лазеры получили широкое применение благодаря широкому выбору параметров, возможности настройки импульса в широком диапазоне длительности, частот и мощностей.

Мощность волоконных лазеров – от 1 Вт до 30 кВт. Длина оптического волокна – до 20 м.


Применение волоконных лазеров:

резка металлов и полимеров в промышленном производстве,

прецизионная резка,

микрообработка металлов и полимеров,

обработка поверхностей,

пайка,

термообработка,

маркировка продукции,

телекоммуникация (оптоволоконные линии связи),

производство электроники,

производство медицинских приборов,

научное приборостроение.

Преимущества волоконных лазеров:

– волоконные лазеры являются уникальным инструментом, открывающим новую эру в обработке материалов,

портативность и возможность выбора длины волны волоконных лазеров позволяют реализовать новые эффективные применения недоступные для других типов ныне существующих лазеров,

– превосходят другие типы лазеров практически по всем существенным параметрам, важным с точки зрения их промышленного использования,

возможности настройки импульса в широком диапазоне длительности, частот и мощностей,

– возможность задания последовательности коротких импульсов с требуемой частотой и высокой пиковой мощностью , что необходимо, к примеру, для лазерной гравировки,

широкий выбор параметров.

Сравнение лазеров различных типов:

Параметр Требуется для использования в промышленности СО 2 YAG-Nd с ламповой накачкой YAG-Nd с диодной накачкой Диодные лазеры
Выходная мощность, кВт 1…30 1…30 1…5 1…4 1…4 1…30
Длина волны, мкм как можно меньше 10,6 1,064 1,064 или 1,03 0,8…0,98 1,07
BPP, мм х мрад < 10 3…6 22 22 > 200 1,3…14
КПД, % > 20 8…10 2…3 4…6 25…30 20…25
Дальность доставки излучения волокном 10…300 отсутствует 20…40 20…40 10…50 10..300
Стабильность выходной мощности как можно выше низкая низкая низкая высокая очень высокая
Чувствительность к обратному отражению как можно ниже высокая высокая высокая низкая низкая
Занимаемая площадь, кв.м как можно меньше 10…20 11 9 4 0,5
Стоимость монтажа, отн.ед. как можно меньше 1 1 0,8 0,2 < 0,05
Стоимость эксплуатации, отн.ед. как можно меньше 0,5 1 0,6 0,2 0,13
Стоимость обслуживания, отн.ед. как можно меньше 1…1,5 1 4…12 4…10 0,1
Периодичность замены ламп или лазерных диодов, час. как можно больше 300…500 2000…5000 2000…5000 > 50 000


2000w cw оптико raycus импульсный волоконный иттербиевый лазер 50 вт 100 квт купить производитель
волоконные твердотельные лазеры
резка металлов фанеры обалденная cernark гравировка режимы глубокой гравировки волоконным лазером
устройство иттербиевого волоконного лазера
волоконная машина продаю лазер
принцип работы производство фрязино 1.65 мкм технология иттербиевый купить цена ipg лс 1 оптический для резки металла гравировка импульсный принцип работы станок оптико применения мощность своими руками устройство схема длина волны сварка производитель режет волнами

Коэффициент востребованности 902

ТОМАС ШРИБЕР, АНДРЕАС ТЮННЕРМАН и АНДРЕАС ТОМС

Благодаря идентификации проблем мощных волоконных лазеров и оптимизации оптического волокна, была достигнута одномодовая мощность 4,3 кВт с будущим возможным масштабированием и новыми сверхбыстрыми лазерными приложениями в разработке.

Если есть одна очевидная тенденция в лазерной технологии, то это рост волоконных лазеров. Волоконные лазеры взяли на себя долю рынка от мощных CO2-лазеров, а также от объемных твердотельных лазеров при мощной резке и сварке. Крупные производители волоконных лазеров в настоящее время обращаются к ряду новых приложений, чтобы завоевать еще больше рынков.

Среди мощных лазеров одномодовые системы предлагают функции, которые делают их желательными: они обладают самой высокой яркостью, и их можно сфокусировать до нескольких микрон и до самых высоких интенсивностей. Они также демонстрируют наибольшую глубину фокуса, что делает их наиболее подходящими для дистанционной обработки.

Тем не менее, их сложно изготовить, и только лидирующая на рынке лидирующая компания PHG Photonics (Oxford, MA) предлагает систему мощностью 10 кВт с одномодовым излучением (2009).

К сожалению, нет данных на эти характеристики луча, в частности, о любых возможных многомодовых компонентах, которые могут соответствовать одномодовому лучу.

Команда исследователей в Германии продемонстрировала одномодовую мощность 4,3 кВт от волоконного лазера, в которой выход был ограничен только мощностью входной накачки.

Финансируется правительством Германии и в сотрудничестве с TRUMPF (Ditzingen, Germany), Active Fiber Systems, Jenoptik и Лейбницским институтом фотонных технологий, группой ученых из Университета Фридриха Шиллера и Института прикладной оптики и точной инженерии Фраунгофера (все В Йене, Германия) проанализировали проблемы для масштабирования таких лазеров, а затем разработали новые волокна для преодоления ограничений. Команда успешно завершила серию испытаний, показывающих одномодовый выход 4,3 кВт, в которых выход волоконного лазера ограничивался только мощностью входной накачки.

Эффекты сдерживания для одномодового волоконного лазерного масштабирования

Каковы проблемы для такого одномодового мощного волоконного лазера? Они могут быть сгруппированы в три поля: a) улучшенная накачка, b) разработка активного волокна с низкими оптическими потерями, работающими только в одномодовом режиме, и c) правильное измерение результирующего излучения.

В этой статье мы будем предполагать, что а) решается с помощью высокоярких лазерных диодов и соответствующих методов развязки, и сосредоточимся на двух других областях.

В рамках разработки активного волокна для высокомощного одномодового режима для оптимизации используются два общих набора параметров: легирование и геометрия. Все параметры должны быть определены для минимальных потерь, одномодового режима и, наконец, мощного усиления. Идеальный волоконный усилитель обеспечит высокую скорость преобразования более 90%, отличное качество луча и выходную мощность, ограниченную только доступной мощностью накачки.

Однако повышение масштаба одномодовой системы до более высоких мощностей может привести к большей плотности мощности внутри активной активной зоны, увеличению тепловой нагрузки и ряду нелинейных оптических эффектов, таких как вынужденное комбинационное рассеяние (ВКР) и вынужденное рассеяние Бриллюэна (SBS) ,

В зависимости от размера активной сердцевины можно возбуждать и усиливать несколько поперечных мод. Для заданного шага индекса между ядром и оболочкой, чем меньше активное сечение активной ячейки, тем меньше число таких режимов. Однако меньший диаметр также означает более высокую плотность мощности. Несколько трюков, таких как сгибание волокна, добавляют потери для более высоких режимов.

Тем не менее, для больших диаметров сердечника и при тепловой нагрузке могут возникать другие режимы. Эти режимы подвержены взаимодействию во время усиления — без оптимальных условий распространения, выходной профиль может стать пространственно или временно неустойчивым.

Нестабильности поперечных мод

Иттербий (Yb) -допированные волокна являются типичной рабочей средой для мощных одномодовых волоконных лазеров. Но за пределами определенного порога они показывают совершенно новый эффект — так называемые неустойчивости поперечной моды (TMI).

При определенном уровне мощности внезапно появляются более высокие режимы или даже моды оболочки, энергия динамически передается между этими режимами, а качество луча уменьшается.

Пучок начинает колебаться на выходе.

Поскольку TMI была обнаружена, она наблюдалась в различных конструкциях волокон от волокон с шаговым индексом до волокон фотонного кристалла. Только его пороговое значение зависит от геометрии и легирования, но грубая оценка говорит о том, что этот эффект превышает выходную мощность 1 кВт.

Тем временем было обнаружено, что эффект связан с тепловыми эффектами внутри волокна с сильным отношением к эффектам фотопотемнения. Более того, восприимчивость волоконных лазеров к TMI, по-видимому, зависит от состава ядра.

Геометрия шагового индекса приводит к ряду параметров для оптимизации. Диаметр сердечника, размер облицовки насоса и индекс разности преломления между сердечником и оболочкой насоса могут быть настроены. Эта настройка зависит от концентрации легирующей примеси, т. е. концентрация ионов Yb может быть использована для управления длиной поглощения излучения накачки в активном волокне. Другие добавки могут быть добавлены для снижения тепловых эффектов и управления этапом показателя преломления.

Но есть некоторые противоположные требования. Чтобы уменьшить нелинейные эффекты, волокно должно быть короче. Однако для снижения тепловой нагрузки волокно должно быть длиннее. Фото-потемнение растет с квадратом концентрации легирующей примеси, поэтому более длинные волокна с более низким допингом также будут лучше.

Приложения в ультрабыстрой науке

После примерно десятилетия стагнации в области масштабирования мощных одномодовых волоконных лазеров теперь представляется целесообразным разработать новое поколение волоконных лазеров с киловаттным классом с отличным качеством луча.

Показаны выходные мощности 4,3 кВт, ограниченные только мощностью накачки.

Определены основные ограничения для дальнейшего масштабирования, и были определены пути преодоления этих ограничений.

Следует отметить, что это было тщательное исследование всех известных эффектов и последующая оптимизация параметров, которые привели к успехам в дизайне волокон и, наконец, к новым рекордам в выходной мощности.

Дальнейшее масштабирование и адаптация волокна для других приложений кажутся выполнимыми и будут нацелены дальше.

Это открывает ряд интересных перспектив.

С одной стороны, передача результатов в промышленные продукты желательна партнерами по проекту, но потребует дополнительных крупных усилий в области развития.

С другой стороны, эта технология очень важна для масштабирования других волоконно-оптических лазерных систем, таких как фемтосекундные волоконные усилители.

REFERENCES

  1. F. Beier et al., «Single-mode 4.3 kW output power from a directly diode-pumped Yb-doped fiber amplifier,» to be published in Opt. Express.
  2. T. Eidam et al., Opt. Lett., 35, 94–96 (2010).
  3. M. Müller et al., Opt. Lett., 41, 3439–3442 (2016).

Сверхактивное развитие современной промышленности зачастую стимулирует появление и новых технологических подходов, основанных на передовых научных разработках, направленных на расширение спектра и количества выпускаемой продукции. Удачным примером такого симбиоза требований производства с научными достижениями стала область лазерных технологий. Масса преимуществ с минимумом недостатков стали причиной повсеместного внедрения в сфере маркировки деталей, узлов и изделий оборудования, основой которого стали лазерные технологии.

В индустрии лазерной маркировки применяется широкая гамма лазерного оборудования (КАТАЛОГ) , основанная на применении разных типов лазерных излучателей. Качество излучения, значительный рабочий ресурс и стабильность генерируемого светового потока обусловили самое широкое применение маркировочной аппаратуры на основе твердотельных лазеров. Промышленный маркиратор на базе твердотельного лазера изготавливается в различных форм-факторах и в зависимости от требований производства может быть как компактным для гибкого применения в условиях производственного участка, так и стационарным с дополнительным оборудованием для маркировки серийных партий.

Волоконные лазеры, активно применяющиеся во многих лазерных системах маркировки, относятся к группе твердотельных лазеров, работают с длиной волны 1,064 мкм и позволяют добиваться на выходе высокой мощности луча. Оптоковолоконный лазер генерирует энергию за счёт диодной накачки активной среды, в качестве которой выступает встроенное оптическое волокно.

Типовая схема подобного устройства состоит из трёх основных компонентов:

  1. Модуль накачки. В качестве источника накачки оптических волноводов применяются широкополосные светодиоды или лазерные диоды с одномодовым излучением, обеспечивающие высокую яркость и большой ресурс выработки;
  2. Активная среда. Состоит из активного оптоволокна и волновода накачки. Используются волоконные световоды, легированные добавками редкоземельных элементов или висмута. Плотность легирования определяется длиной изготавливаемого оптоволокна. В качестве основного материала оптоволокна выступает сверхчистый плавленый кварц, обладающий минимальными оптическими потерями. Верхний предел мощности накачки подобного легированного кварца составляет единицы киловатт, который определяется предельной мощностью излучения на единицу площади, при которой материал не разрушается;
  3. Оптический резонатор. Выполняет функции резонансной системы лазера и предназначен для создания положительной обратной оптической связи, за счёт которой лазерный усилитель превращается в лазерный генератор. Он фокусирует излучаемый активным веществом свет в один узкий пучок. Резонатор определяет спектр, поляризацию и направленность генерируемого излучения. Чаще всего в конструкции резонатора используют брэгговские зеркала, кольцевые резонаторы и резонаторы типа Фабри-Перо.

Области применения технологического оборудования для маркировки, оснащённые оптоволоконными лазерами, достаточно разнообразны: точная микрообработка различных материалов, нанесение графической маркировки, микрофрезеровка, нанесение надписей на приборных панелях, художественное структурирование поверхностей. Маркировочная табличка и шильдики, идентифицирующие штрих-коды, обработка тонких фольгированных материалов - всё это с легкостью подвластно аппаратуре на основе оптиковолоконных лазеров.

Устройства маркировки на базе волоконных лазерных излучателей успешно конкурируют с другими видами маркировки, как традиционными, так и на основе других типов лазеров. Они имеют невысокую стоимость, компактны, просты в эксплуатации, имеют высокую скорость работы и КПД.

Технические преимущества волоконного иттербийвого лазера.

Волоконные лазеры производства Telesis, такие как Zenith 10FQ , представляют собой современную и уникальную концепцию генерирования лазерного луча; оптическое волокно является средой, генерирующей лазер.

Типичные твердотельные лазеры с диодной накачкой (DPSSL) обладают оптоволоконными источниками света, которые используются для передачи света в удалённый кристалл, являющийся средой для генерирования лазера. Традиционные твердотельные лазеры с диодной накачкой (DPSSL) могут быть описаны как “удалённый диодный источник света, передающий свет по волокну, которое служит для торцевой накачки света в твердотельный кристалл”. Большинство систем DPSSL (diode pumped solid state laser), имеющихся сегодня на рынке, представляют собой лазеры с торцевой диодной накачкой.

Дизайн волоконного лазера Zenith 10FQ является прорывом в лазерной технологии и является адаптацией многих технических разработок лазеров, используемых в военной и телекоммуникационной сферах. Корпорация Telesis внедрила эти технические разработки в промышленные лазерные маркирующие системы. Ввиду своего исторического развития волоконные лазеры Telesis более легко интегрируются в промышленные процессы и адаптируются к широкой сфере применений, в отличие от более традиционных лазеров с диодной накачкой и волоконной передачей света.

Технические преимущества волоконных лазеров, таких как Zenith 10FQ , в сравнении с традиционными лазерами с диодной накачкой:

    Волоконные лазеры не требуют специального обслуживания

    1. Выверенная твердотельная технология

      • Меньше компонентов , требующих обслуживания

    2. Нет необходимости настраивать источник света под оптику камеры накачки

      • Оптика камеры накачки “внедрена” в активное волокно

      Нет необходимости в оптимизации лазерного источника света

      • На предприятии-изготовителе д иодный источник света фиксирован в оптимизированном положении в активной волоконной среде, генерирующей лазер.

      Нет необходимости вручную выбирать диодные источники света в границах узкого рабочего окна в надежде оптимизировать технические характеристик.

      • Диодные источники света охватывают широкий спектр, что резко увеличивает срок службы диода и обеспечивает стабильную работу.

        Диодные источники света являются широкополосными и изготовлены в соответствии с жёсткими требованиями, предъявляемыми к телекоммуникационным устройствам по непрерывной работе в экстремальных условиях. Технические условия предусматривают параметры изделий, в два раза превышающие те, которые когда-либо потребуются при промышленном применении.

      Самокалибрующийся, работающий по принципу «установил и забыл» лазер для эксплуатации без операторского сопровождения 24 часа в сутки 7 дней в неделю.

      • Система Zenith 10FQ осуществляет автоматический мониторинг мощности лазерного источника, постоянно реагирует на ситуацию, что позволяет поддерживать уровень мощности независимо от изменений в подаваемом напряжении или возможного незначительного ухудшения отдельных диодов.

        В лазерной системе Zenith ® даже при самом невероятном развитии событий, когда один диод выйдёт из строя (в каждой системе 6 накачивающих диодов), другие диоды автоматически настроят свою мощность для компенсации потери.

      Среднее время наработки на отказ составляет 100.000 часов непрерывной работы.

      Испытано в реальных условиях

      • Тысячи волоконных лазеров круглосуточно используются в военной сфере и сфере телекоммуникации.

    Волоконные лазеры Zenith ® могут работать в более суровых окружающих условиях, чем традиционные лазеры.

    1. Твердотельный дизайн позволяет лазеру быть устойчивым к более значительным колебаниям температур, чем способен лазер с диодной накачкой.

      Оптика накачивающей камеры системы Zenith 10FQ «впаяна» в активное волокно, что позволяет использовать установку в условиях повышенной влажности, до 90% (без конденсата), что является гораздо более высоким значением, чем ограничения для традиционных лазеров с диодной накачкой с незащищённой оптикой камеры накачки.

    В качестве стандартной функции волоконный лазер Zenith 10FQ обладает встроенными в панель измерителем мощности и индикаторами ошибок.

    • Цифровые измерители мощности показывают реальную мощность лазера на передней панели контроллера. Индикаторы ошибок на панели предоставляют моментальную информацию по состоянию лазерной маркирующей системы.

      Самокалибрующаяся мощность лазера, монитор с информацией о мощности и индикаторы ошибок, а также высокий срок службы диодов и дублирующая цепь приводит к тому, что оператору не нужно проводить еженедельную проверку и настройку, которые являются неотъемлемой чертой стандартных лазерных систем с торцевой диодной накачкой.

    Воздушное охлаждение, теплоотведение

    1. Волоконные лазеры Telesis нагреваются меньше, чем любые другие лазеры, благодаря превосходному КПД преобразования питания.

      • Нет необходимости в водяном охлаждении, которое может протечь, или сложных охлаждающих схемах, таких как активные охлаждающие плиты Thermoelectric , которые могут выйти из строя.

    Одномодовая волоконная подающая линия с практически идеальным профилем луча

    1. Стабильность луча во время работы означает высокое качество маркировки и формирования символов вне зависимости от установок.

      • Качество луча (фактор M 2) для лазера Zenith 10FQ составляет менее 2 (между 1.5 и 1.8 в зависимости от выбранной оптики), что создаёт форму луча, оптимальную для маркировки металла и пластика.

        Качество профиля луча остаётся одинаковым при динамике рабочего диапазона от 0.01 до 10 Вт выходной мощности (в отличие от большинства систем с диодной накачкой, которые нестабильны при нижних 5% и верхних 10% рабочего диапазона).

    2. Идеальный профиль луча означает, что на изделие можно направлять более высокие уровни энергии, что позволяет:

      • Осуществить более быструю и глубокую маркировку на материале

        Направить высококачественный фокусируемый луч с лучшей управляемостью на нежелательные заново отлитые и подверженные термической обработке зоны.

        Сократить цикл работы

    Высокая скорость повтор ений модуляции нагрузки добротности луча (beam Q - switching )

    1. Высокая скорость повторений с оптимизированными импульсами позволяет достичь того, что иногда называется “более холодный лазерный луч ”

      • Ограничивает ся нежелательное сжигание пластика, фольги, бумаги или субстрата.

        Можно маркировать более широкий диапазон пластиковых материалов, добиваясь контраста при обесцвечивании только маркируемой области.

        Огранич ение газообразования при маркировке материалов, таких как пластик, в процессе чего возникают неравномерные накопления отходов на некоторых материалах.

        Проще регулировать глубину маркировки .

    Простое и стандартной подключение к переменному току и высокие КПД потребления электричества

    1. Один из самых производительных лазеров из когда-либо созданных

      • Общая сила тока для Zenith 10FQ (только лазера) составляет всего лишь 2 А. Подаваемое напряжение - 230 В, 60Гц.Примечание : подаваемое электричество должно иметь предохранитель на 250В при 6 А

    При добавлении внешних устройств или приспособлений для автоматической подачи сила тока увеличивается, что повышает потребление питания всей системой

    Внешне водяное охлаждение не требуется.

Энергетический КПД в два раза превышает значение самой лучшей системы с диодной накачкой.

  • При работе системы Zenith 10FQ (только лазер) потребляется менее 600Вт. Обычный лазер с диодной накачкой потребляет более 1,15КВт.

    Со временем маркирующая лазерная система Zenith 10FQ позволит достичь значительную экономию на потребляемой энергии

Zenith 10FQ менее восприимчив к небольшим изменениям в подаваемом питании, чем большинство лазерных систем с диодной накачкой.

  • Используются широкополосные диоды для достижения максимальной производительности

    Внутренняя контролирующая цепь для коррекции мощности лазера

    Простой и рациональный промышленный дизайн

    1. Встроенный диод с красным светом фокально выровненный с основным лазерным направлением

      • Простая настройка и холостой запуск

    2. Расстояние между лазерным контролером и фокусирующего оптического блока может быть до 5 метров (Telesis оставляет за собой право конфигурировать длину подающего волокна для оптимизация конкретных условий применения).

      • Небольшая лёгкая головка может быть интегрирована практически в любом положении.

        Гибкая армированная защита вокруг оптических частей

      Стандартный 19-дюймовый контроллер, монтируемый на стойку

      • Легко смонтировать в существующую производственную линию или новую специальную рабочую станцию.

      Управление посредством гибкого , усовершенствуемого, стандартного персонального компьютера.

      • Стандартные настольные компьютеры и мониторы

        В качестве опции поставляются портативные компьютеры с интерфейсными картами

    Простота в обслуживании

    1. Нет необходимости в расходных лампах или фильтрах

      Упрощенный модульный дизайн включает четыре блока, которые могут потребовать обслуживания или замены любым техником прямо на месте.

      • ПК или ПО

        Лазерный контроллер / лазерный источник

        Армированный кабель / кабельный интерфейс

        Фокусирующий оптический блок

Экономические преимущества волоконного лазера Zenith 10FQ

  1. Гарантия
    1. Гарантия на диодные источники света Zenith 10FQ составляет невероятные 20.000 часов (замеряемые на встроенном таймере лазерного источника) или два года с даты поставки.
      • Опыт эксплуатации данных волоконных лазеров показывает время наработки на отказ около 75.000 часов, в среднем. (мы рекламируем это достижение как “Эксплуатация системы без обслуживания более 50.000”).
    2. Большинство система с торцевой диодной накачкой могут предложить только гарантию 10.000 часов на источник света ввиду вручную выбираемых узкополосных диодов, необходимых для работы, и непроизводительность удалённой торцевой накачки кристалла, генерирующего лазер. Некоторые компании предлагают сложную схему пропорциональных 15,000 часов, при которых вы платите за процент времени, в течение которого вы «потребляли» диодный источник.
      • На ранних этапах существования систем с диодной накачкой целью было получить наработку на отказ 10.000 часов.
      • Опыт использования систем с диодной накачкой нового поколения показывает средний срок наработки на отказ - около 15.000 часов.
      • При использовании Zenith 10FQ это произойдёт между 50.000 и 100.000 часами, при этом 75.000 часов является средним значением.
        • Например, при трёхсменной работе, 24 часа в сутки, 50 недель, получаем 8.400 часов в год; тогда средний показатель наработки на отказ 75.000 часов означает замену диода раз в 9 лет при использовании системы Zenith 10FQ .
      • Замена диода в системе с диодной накачкой произойдёт между 10.000 и 20.000 часами, при этом среднее количество часов - 15.000.
        • Например, при трёхсменной работе, 24 часа в сутки, 50 недель, получаем 8.400 часов в год; тогда средний показатель наработки на отказ 15,000 часов означает замену диода раз в 2 года при использовании систем с диодной накачкой.
  2. Большой срок эксплуатации до потребности в замене частей
    1. В конце концов, все диодные источники света потребуют замены или обслуживания за счёт пользователя.
  3. Эксплуатационные расходы (преимущество Zenith 10FQ )
    1. Худший вариант развития событий.
      • Стоимость замены диодного источника света для Zenith® 10F составляет около $8,550. Стоимость замены источника света для типичной системы торцевой диодной накачки составляет около $7,500. При худшем варианте развития событий при использовании Zenith 10FQ , когда источник придётся менять вне гарантии, рассчитаем затраты на замену источника света стоимостью $8.500 после срока гарантии, составляющего 50.000 часов. 1.8,500 долларов разделить на 50.001 час, что составит $0.17 в час при использовании Zenith 10FQ (в худшем случае).
      • При худшем варианте развития событий при использовании типичной системы с торцевой диодной накачкой рассчитаем затраты на замену источника света стоимостью $7.500 после срока гарантии, составляющего 10.000 часов. 1.7,500 долларов разделить на 10,001 час, что составит $0.75 в час при использовании системы с диодной накачкой (в худшем случае).
    2. Лучший вариант развития событий. Принимая во внимание, что среднее время наработки на отказ волоконной лазерной системы Zenith 10FQ составляет 100.000 часов, а типичной системы с диодной накачкой - 15,000 часов, тогда:
      • При лучшем варианте развития событий для Zenith 10FQ затраты на замену источника света стоимостью $8.500 с учётом наработки на отказ 100.000 часов составят: $8.500 разделить на 100,000 часов, что составит $0.09 в час при использовании Zenith 10FQ (в лучшем случае).
      • При лучшем варианте развития событий для типичной системы с торцевой диодной накачкой затраты на замену источника света стоимостью $7.500 с учётом наработки на отказ 15.000 часов составят: $7.500 разделить на 15,000 часов, что составит $0.50 в час при использовании системы с диодной накачкой (в лучшем случае).
  4. Ежедневное потребление энергии
    1. Волоконные лазеры обладают в два раза большим энергетическим КПД, чем самые лучшие системы с диодной накачкой. При работе Zenith® 10FQ в полную мощность (только лазер) потребляется менее 600 Вт электрической энергии.
      • Например, при использовании Zenith 10FQ , если, в среднем, кВт/час стоит 2 руб. за кВт; тогда потребление за одни сутки непрерывного использования составят 600 Вт/час умножить на 24 час равно 14.4 кВт.
      • При стоимости 1 кВт 2 руб. максимальные затраты в сутки составят: 2 руб. Х 14.4 кВт = 28,80 руб. при использовании Zenith 10FQ .
    2. Типичная система с диодной накачкой потребляет более 1,15 кВт электрической энергии.
      • Например, при использовании системы с диодной накачкой, если, в среднем, кВт/час стоит 2 руб. за кВт; тогда потребление за одни сутки непрерывного использования составят 1.150 Вт/час умножить на 24 час равно 27,6 кВт.
      • При стоимости 1 кВт 2 руб. максимальные затраты в сутки составят: 2 руб. Х 27.6 кВт = 55,20 руб. при использовании типичной системы с диодной накачкой.

Преимущества волоконного лазера перед лазерами с диодной и ламповой накачкой

    Лучшее качество луча

    Более высокий электрический КПД

    Большая надёжность

    Низкие эксплуатационные расходы

    Низкие расходы на обслуживание

    Небольшой размер

    Удалённая передача луча

    Гарантия - 20 тыс. часов работы

    Наработка на отказ от 30 до 50 тыс. часов. Среднее время - 100 тыс. часов до выхода элемента накачки лазера из строя

Перевод Сергея Рогалева

Под термином «оптоволоконный лазер» обычно понимается лазер с оптическим волокном в качестве усиливающей среды, хотя некоторые лазеры с полупроводниковой усиливающей средой и волоконным резонатором также назвают оптоволоконными лазерами. В большинстве случаев усиливающей средой оптоволоконных лазеров является волокно, допированное редкоземными ионами, такими как эрбий (Er 3+), неодим (Nd 3+), иттербий (Yb 3+), тулий (Tm 3+) или празеодимий (Pr 3+). Для накачки используются один или несколько лазерных диодов.

Резонатор оптоволоконного лазера

Для создания линейного резонатора оптоволоконного лазера, необходимо использовать некоторый отражатель (зеркало), или же создать кольцевой резонатор (кольцевой оптоволоконный лазер).

В линейных резонаторах оптоволоконного лазера используются различные типы зеркал:

· В простых лабораторных установках обычные диэлектрические зеркала могут прикрепляться к перпендикулярно сколотым концам волокна, как показано в рисунке 1. Этот подход, однако, не очень практичен для массового производства и также не очень надежен.

· Френелевское отражение от торца волокна часто достаточно для использования в качестве выходного зеркала резонатора волоконного лазера. На Рис. 2 приведен пример.

· Также возможно внести диэлектрические покрытия непосредственно на концах волокна, обычно методом напыления. Такие покрытия могут использоваться для отражения в широком диапазоне.

· Во многих волоконных лазерах используются волоконные брэгговские решетки, сформированные непосредственно в легированном волокне, или в нелегированном волокне, спаянным с активным слоем. Рисунок 3 показывает лазер распределенным брэгговским отражателем (РБО лазер) с двумя волоконными решетками, но есть также лазеры с распределенной обратной связью с одной решеткой в легированных волокнах со сдвигом фазы в середине.

· Лучшие характеристики по мощности можно получить за счет использования коллиматора на выходе света из волокна и отражения его обратно с помощью диэлектрического зеркала (рис. 4). Интенсивность на зеркале значительно снижается из-за гораздо большей площади пучка. Однако, небольшое смещение может привести к существенным потерям при отражении, поляризационно-зависимые потери и т.д.

· Другой вариант заключается в использовании зеркала в форме петли волокна (рис. 5), на основе волоконной муфты (например, с коэффициентом разделения 50:50) и куска пассивного волокна.

Большинство волоконных лазеров накачиваются одним или несколькими диодными лазерами с волоконными выходами (излучение лазерного диода вводится в волокно). Накачка света может осуществляться непосредственно в сердцевину, или во внутреннюю оболочку волокна в мощных лазерах.